Рossibilities of clinical application of modern nebulizers
https://doi.org/10.21518/2079-701X-2020-17-50-55
Abstract
The simplicity of converting medicinal solutions and suspensions into aerosols using mechanical and thermal energy, convenient delivery to the airways allows nebulizers to take a worthy place in the treatment of hospitalized and outpatient patients. Different types of nebulizers are available for use in the home and in medical settings (jet, ultrasound, membrane), and researches show that the performance and characteristics of the aerosol vary between different devices and manufacturers. Jet nebulizers are still the most used devices that do not require coordination of inhale and delivery of aerosol to the respiratory tract. To reduce the consumption of medicinal aerosol and optimize the air flow, virtual valve technology (V.V.T.) is being improved, and breath-actuated nebulizers are being created. The advantage of nebulizer therapy is the ability to apply large doses of medications, use substances that exist only in inhaled form. The choice falls on the nebulizer in cases where the patient can not use other delivery devices, for example, if the patient is unable to coordinate the inhalation and intake of the drug into the respiratory tract, with a severe exacerbation of obstructive disease, in the presence of motor disorders. The optimal delivery device for children of any age, including newborns, is a nebulizer. The most common indication for nebulizer therapy is the delivery of bronchodilators and inhaled corticosteroids for asthma or chronic obstructive pulmonary disease, as well as the treatment of upper respiratory tract diseases, in particular croup in children. An important place is given to nebulizers when it is necessary to prescribe certain mucolytics and antibiotics. In the treatment of emergency conditions, inhalation administration of drugs may be required, including situations when the patient is on mechanical ventilation or has a tracheostomy installed. The significance of nebulizers in the treatment of cystic fibrosis, pulmonary arterial hypertension, and alpha-1-antitrypsin deficiency is being studied. The possibilities of endobronchial delivery of heparin, insulin, and monoclonal antibodies are evaluated.
About the Author
Yu. G. BelotserkovskayaRussian Federation
Yulia G. Belotserkovskaya, Cand. of Sci. (Med.), Associate Professor, Department of Pulmonology
2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993
References
1. Dhand R., Cavanaugh T., Skolnik N. Considerations for Optimal Inhaler Device Selection in Chronic Obstructive Pulmonary Disease. Cleve Clin J Med. 2018;85(2 suppl 1)19–27. doi: 10.3949/ccjm.85.s1.04.
2. Roy A., Pleasants R.A., Hess D.R. Aerosol Delivery Devices for Obstructive Lung Diseases. Respir Care 2018;63(6):708–733. doi: 10.4187/respcare.06290.
3. Boe J., Dennis J.H., O’Driscoll B.R., Bauer T.T., Carone M., Dautzenberg B. et al. European Respiratory Society Guidelines on the use of nebulizers. Eur Respir J. 2001;18(1):228–242. doi: 10.1183/09031936.01.00220001.
4. Hess D.R. Nebulizers: principles and performance. Respir Care. 2000:45:609–622. Available at: https://www.researchgate.net/publication/12425670_Nebulizers_Principles_and_performance.
5. Edge R., Butcher R. Vibrating Mesh Nebulizers for Patients with Respiratory Conditions: Clinical Effectiveness, Cost-Effectiveness, and Guidelines. Ottawa: CADTH; 2019. 20 p. Available at: https://www.ncbi.nlm.nih.gov/books/NBK546785/pdf/Bookshelf_NBK546785.pdf.
6. Gowda A.A., Cuccia A.D., Smaldone G.C. Reliability of Vibrating Mesh Technology. Respir Care. 2017;62(1):65–69. doi: 10.4187/respcare.04702.
7. Skaria S., Smaldone G.C. Omron NE U22: comparison between vibrating mesh and jet nebulizer. J Aerosol Med Pulm Drug Deliv. 2010;23(3):173– 180. doi: 10.1089/jamp.2010.0817.
8. Dhand R. Nebulisers that use a vibrating mesh or plate with multiple apertures to generate aerosol. Respir Care. 2002;47(12):1406–1416. Available at: http://www.rcjournal.com/contents/12.02/12.02.1406.pdf.
9. Coates A.L., Green M., Leung K., Chan J., Ribeiro N., Ratjen F., Charron M. A comparison of amount and speed of deposition between the PARI LC STAR® jet nebulizer and an investigational eFlow® nebulizer. J Aerosol Med Pulm Drug Deliv. 2011;24(3):157–163. doi: 10.1089/jamp.2010.0861.
10. Knyazheskaya N.P. Features of the use of nebulizers in the therapy of chronic lung diseases. RMZH = RMJ. 2017;(18):1317–1320 (In Russ.) Available at: https://www.rmj.ru/articles/bolezni_dykhatelnykh_putey/Osobennosti_ispolyzovaniya_nebulayzerov_v_terapii_hronicheskih_zabolevaniy_legkih/#ixzz6aBFT7T4h.
11. Hess D.R. Aerosol delivery devices in the treatment of asthma. Respir Care. 2008;53(6):699–723. Available at: https://pubmed.ncbi.nlm.nih.gov/18501026/.
12. Lavorini F., Fontana G.A., Usmani O.S. New Inhaler Devices – The Good, the Bad and the Ugly. Respiration. 2014;88(1):3–15. doi: 10.1159/000363390.
13. O’Callaghan C., Barry P.W. The science of nebulised drug delivery. Thorax. 1997;52(2):31–44. doi: 10.1136/thx.52.2008.s31.
14. Lokshina Е.Е., Zaytseva О.V. Inhalation therapy in children: new opportunities. P’monologiya = Pulmonology. 2019;29(4):499–507. (In Russ.) doi: 10.18093/0869-0189-2019-29-4-499-507.
15. Melani A.S. Nebulized corticosteroids in asthma and COPD. An Italian appraisal. Respir Care. 2012;57(7):1161–1174. Available at: http://rc.rcjournal.com/content/57/7/1161.
16. Chrystyn H., van der Palen J., Sharma R., Barnes N., Delafont B., Mahajan A., Thomas M. Device errors in asthma and COPD: systematic literature review and meta-analysis. NPJ Prim Care Respir Med. 2017;27(1):22. doi: 10.1038/s41533-017-0016-z.
17. Dhand R., Dolovich M., Chipps B., Myers T.R., Restrepo R., Farrar J.R. The role of nebulized therapy in the management of COPD: evidence and recommendations. COPD. 2012;9(1):58–72. doi: 10.3109/15412555.2011.630047.
18. Ari A., Fink J.B., Dhand R. Inhalation therapy in patients receiving mechanical ventilation: an update. J Aerosol Med Pulm Drug Deliv. 2012;25(6):319– 332. doi: 10.1089/jamp.2011.0936.
19. Dhand R. How should aerosols be delivered during invasive mechanical ventilation? Respir Care. 2017;62(10):1343–1367. doi: 10.4187/respcare.05803.
20. Hess D.R. Aerosol therapy during noninvasive ventilation or high- flow nasal cannula. Respir Care. 2015;60(6):880–891. doi: 10.4187/respcare.04042.
21. Berlinski A., Ari A., Davies P., Fink J., Majaesic C., Reychler G. et al. Workshop report: aerosol delivery to spontaneously breathing tracheostomized patients. J Aerosol Med Pulm Drug Deliv. 2017;30(4):207–222. doi: 10.1089/jamp.2016.1348.
22. Girbes A.R., Beishuizen A., Strack van Schijndel R.J. Pharmacological treatment of sepsis. Fundam Clin Pharmacol. 2008;22(4):355–361. doi: 10.1111/j.1472-8206.2008.00606.x.
23. Sun Y., Yang R., Zhong J.G., Fang F., Jiang J.J., Liu MY., Lu J. Aerosolised surfactant generated by a novel noninvasive apparatus reduced acute lung injury in rats. Crit Care. 2009;13(2):R31. doi: 10.1186/cc7737.
24. Mohamed H.S., Meguid M.M. Effect of nebulized budesonide on respiratory mechanics and oxygenation in acute lung injury/acute respiratory distress syndrome: Randomized controlled study. Saudi J Anaesth. 2017;11(1):9–14. doi: 10.4103/1658-354X.197369.
25. McAuley D.F., Laffey J.G., O’Kane C.M., Perkins G.D., Mullan B., Trinder T.J. et al. Simvastatin in the acute respiratory distress syndrome. N Engl J Med. 2014;371(18):1695–1703. doi: 10.1056/NEJMoa1403285.
26. Hill N.S., Preston I.R., Roberts K.E. Inhaled Therapies for Pulmonary Hypertension. Respir Care. 2015;60(6):794–802. doi: 10.4187/respcare.03927.
27. Wang S., Yu M., Zheng X., Dong S.A. Bayesian network meta-analysis on the efficacy and safety of eighteen targeted drugs or drug combinations for pulmonary arterial hypertension. Drug Deliv. 2018;25(1):1898–1909. doi: 10.1080/10717544.2018.1523257.
28. Castellani C., Duff A.J.A., Bell S.C., Heijerman H.G.M., Munck A., Ratjen F. et al. ECFS best practice guidelines: The 2018 revision. J Cyst Fibros. 2018;17(2):153–178. doi: 10.1016/j.jcf.2018.02.006.
29. Hill A.T., Sullivan A.L., Chalmers J.D., De Soyza A., Elborn J.S., Floto R.A. et al. British Thoracic Society guideline for bronchiectasis in adults. BMJ Open Respir Res. 2018;5:e000348. doi: 10.1136/bmjresp-2018-000348.
30. Abdellatif S., Trifi A., Daly F., Mahjoub K., Nasri R., Ben Lakhal S. Efficacy and toxicity of aerosolised colistin in ventilator-associated pneumonia: A prospective, randomised trial. Ann Intensive Care. 2016;6(1):26. doi: 10.1186/s13613-016-0127-7.
31. Banerjee S., McCormack S. Acetylcysteine for Patients Requiring Mucous Secretion Clearance: A Review of Clinical Effectiveness and Safety. Ottawa: CADTH; 2019. 22 p. Available at: https://www.ncbi.nlm.nih.gov/books/NBK546019/pdf/Bookshelf_NBK546019.pdf.
32. Yang C., Montgomery M. Dornase alfa for cystic fibrosis. Cochrane Database Syst Rev. 2018;9(9):CD001127. doi: 10.1002/14651858.CD001127.pub4.
33. Monk R., Graves M., Williams P., Strange C. Inhaled alpha 1-antitrypsin: Gauging patient interest in a new treatment. COPD. 2013;10(4):411–415. doi: 10.3109/15412555.2012.758698.
34. Stolk J., Tov N., Chapman K.R., Fernandez P., MacNee W., Hopkinson N.S. et al. Efficacy and safety of inhaled alpha1-antitrypsin in patients with severe alpha1-antitrypsin deficiency and frequent exacerbations of COPD. Eur Respir J. 2019;54(5):1900673. doi: 10.1183/13993003.00673-2019.
35. Bennett J.V., Fernandez de Castro J., Valdespino-Gomez J.L., Garcia-Garcia Mde L., Islas-Romero R., Echaniz-Aviles G. et al. Aerosolized measles and measles-rubella vaccines induce better measles antibody booster responses than injected vaccines: Randomized trials in Mexican schoolchildren. Bull World Health Organ. 2002;80(10):806–812. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2567652/pdf/12471401.pdf.
36. McCarthy S.D., González H.E., Higgins B.D. Future Trends in Nebulized Therapies for Pulmonary Disease. J Pers Med. 2020;10(2):37. doi: 10.3390/jpm10020037.
37. Glas G.J., Serpa Neto A., Horn J., Cochran A., Dixon B., Elamin E.M. et al. Nebulized heparin for patients under mechanical ventilation: An individual patient data meta-analysis. Ann Intensive Care. 2016;6:33. doi: 10.1186/s13613-016-0138-4.
38. Respaud R., Marchand D., Parent C., Pelat T., Thullier P., Tournamille J.F. et al. Effect of formulation on the stability and aerosol performance of a nebulized antibody. Mabs. 2014;6:1347–1355. doi: 10.4161/mabs.29938.
39. Fan W., Nakazawa K., Abe S., Inoue M., Kitagawa M., Nagahara N., Makita K. Inhaled aerosolized insulin ameliorates hyperglycemia-induced inflammatory responses in the lungs in an experimental model of acute lung injury. Crit Care. 2013;17(2):R83. doi: 10.1186/cc12697.
40. Standaert T.A., Morlin G.L., Williams-Warren J., Joy P., Pepe M.S., Weber A. et al. Effects of repetitive use and cleaning techniques of disposable jet nebulizers on aerosol generation. Chest. 1998;114(2):577–586. doi: 10.1378/chest.114.2.577.
41. Alexander L., Carson J., McCaughan J., Moore J.E., Millar B.C. Thinking inside the box: nebulizer care, safe storage, and risk of infection in cystic fibrosis. J Bras Pneumol. 2020;46(2):e20190226. doi: 10.36416/1806-3756/e20190226.
Review
For citations:
Belotserkovskaya YG. Рossibilities of clinical application of modern nebulizers. Meditsinskiy sovet = Medical Council. 2020;(17):50-55. (In Russ.) https://doi.org/10.21518/2079-701X-2020-17-50-55