Preview

Meditsinskiy sovet = Medical Council

Advanced search

T2-associated diseases: focus on the comorbid patient

https://doi.org/10.21518/2079-701X-2020-17-57-64

Abstract

T2-associated diseases are a group of heterogeneous immune-mediated diseases such as bronchial asthma (BA), chronic rhinosinusitis with nasal polyps (CRSwNP), atopic dermatitis (AD), based common pathogenetic mechanisms with the type 2 immune response (T2 inflammation). Interleukins 4 and 13 (IL-4, IL-13) play a key role in T2 inflammation, activating multiple mediators and types of cell, participating in the differentiation of T-lymphocytes and switching B-lymphocytes to the production of specific immunoglobulin E (IgE), promote migration eosinophils in tissue and airway remodeling. Taking into account pathogenesis of the T2-related diseases and presence of comorbid diseases is a strategically important goal for the optimal targeted therapy. The article discusses the contemporary terminology of T2 inflammation, key cytokines involved in the pathogenesis of atopic diseases, biomarkers of T2 inflammation as criteria for proving T2 inflammation, the place of anti-IL-4/IL-13 targeted biological therapy in international Guidelines for the treatment of severe BA GINA 2020 and EACCI 2020 recommendations, the effect of dupilumab on such clinically significant outcomes as a decrease in the frequency of severe exacerbations and an improvement in lung function, a decrease in the need for oral glucocorticosteroids (GCS) in patients with BA, the evidence base for dupilumab in patients with CRSwNP and AD, as well as further promising research directions for use antiIL-4/IL-13 targeted therapy.

About the Authors

N. A. Kuzubova
Pavlov First Saint Petersburg State Medical University
Russian Federation

Natalia A. Kuzubova, Dr. of Sci. (Med.), Deputy Director of Research Institute of Pulmonology

6–8, Lev Tolstoy St., St Petersburg, 197022



O. N. Titova
Pavlov First Saint Petersburg State Medical University
Russian Federation

Olga N. Titova, Dr. of Sci. (Med.), Professor, Director of Research Institute of Pulmonology

6–8, Lev Tolstoy St., St Petersburg, 197022



References

1. Croisant S. Epidemiology of asthma: prevalence and burden of disease. Adv Exp Med Biol. 2014;795:17–29. doi: 10.1007/978-1-4614-8603-9_2.

2. Ledford D.K., Lockey R.F. Asthma and comorbidities. Curr Opin Allergy Clin Immunol. 2013;13(1)78–86. doi: 10.1097/ACI.0b013e32835c16b6.

3. Brunner P.M., Silverberg J.I., Guttman-Yassky E., Paller A.S., Kabashima K., Amagai M. et al. Increasing comorbidities suggest that atopic dermatitis is a systemic disorder. J Invest Dermatol. 2017;137(1):18–25. doi: 10.1016/j.jid.2016.08.022.

4. Zheng T., Yu J., Oh M.H., Zhu Z. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol Res. 2011;3(2):67–73. doi: 10.4168/aair.2011.3.2.67.

5. Gandhi N.A., Bennett B.L., Graham N.M., Pirozzi G., Stahl N., Yancopoulos G.D. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov. 2016;15(1):35–50. doi: 10.1038/nrd4624.

6. Muraro A., Lemanske R.F. Jr., Hellings P.W., Akdis C.A., Bieber T., Casale T.B. et al. Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2016;137(5):1347–1358. doi: 10.1016/j.jaci.2016.03.010.

7. Wenzel S.E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716–725. doi: 10.1038/nm.2678.

8. Braido F., Tiotiu A., Kowal K., Mihaicuta S., Novakova P., Oguzulgen I.K. Phenotypes/endotypes-driven treatment in asthma. Curr Opin Allergy Clin Immunol. 2018;18(3):184–189. doi: 10.1097/ACI.0000000000000440.

9. Gandhi N.A., Pirozzi G., Graham N.M.H. Commonality of the IL-4/IL-13 pathway in atopic diseases. Expert Rev Clin Immunol. 2017;13(5):425–437. doi: 10.1080/1744666X.2017.1298443.

10. Buzney C.D., Gottlieb A.B., Rosmarin D. Asthma and Atopic Dermatitis: A Review of Targeted Inhibition of Interleukin-4 and Interleukin-13 As Therapy for Atopic Disease. J Drugs Dermatol. 2016;15(2):165–171. Available at: https://pubmed.ncbi.nlm.nih.gov/26885783.

11. Matsunaga K., Katoh N., Fujieda S., Izuhara K., Oishi K. Dupilumab: Basic aspects and applications to allergic diseases. Allergol Int. 2020;69(2):187– 196. doi: 10.1016/j.alit.2020.01.002.

12. Barnes P.J. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–192. doi: 10.1038/nri2254.

13. Holgate S.T. Pathogenesis of asthma. Clin Exp Allergy. 2008;38(6):872–897. doi: 10.1111/j.1365-2222.2008.02971.x.

14. Schleimer R.P., Berdnikovs S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol. 2017;139(6):1752–1761. doi: 10.1016/j.jaci.2017.04.010.

15. Allen J.E., Sutherland T.E. Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin. Semin Immunol. 2014;26(4):329–340. doi: 10.1016/j.smim.2014.06.003.

16. Gallo R.L., Nizet V. Innate barriers against infection and associated disorders. Drug Discov Today Dis Mech. 2008;5(5):145–152. doi: 10.1016/j.ddmec.2008.04.009.

17. Abbas A.K., Lichtman A.H., Pillai S. Cellular and Molecular Immunology. 9th еd. Elsevier; 2018. 608 р. Available at: https://www.elsevier.com/books/cellular-and-molecular-immunology/abbas/978-0-323-47978-3.

18. Kato A. Immunopathology of chronic rhinosinusitis. Allergol Int. 2015;64(2):121–130. doi: 10.1016/j.alit.2014.12.006.

19. Ramanathan M. Jr., Lee W.K., Spannhake E.W., Lane A.P. Th2 cytokines associated with chronic rhinosinusitis with polyps down-regulate the antimicrobial immune function of human sinonasal epithelial cells. Am J Rhinol. 2008;22(2):115–121. doi: 10.2500/ajr.2008.22.3136.

20. Wise S.K., Laury A.M., Katz E.H., Den Beste K.A., Parkos C.A., Nusrat A. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression. Int Forum Allergy Rhinol. 2014;4(5):361–370. doi: 10.1002/alr.21298.

21. Schleimer R.P. Immunopathogenesis of Chronic Rhinosinusitis and Nasal Polyposis. Annu Rev Pathol. 2017;12:331–357. doi: 10.1146/annurevpathol-052016-100401.

22. Fahy J.V. Type 2 inflammation in asthma – present in most, absent in many. Nat Rev Immunol. 2015;15(1):57–65. doi: 10.1038/nri3786.

23. Corren J. Role of interleukin-13 in asthma. Curr Allergy Asthma Rep. 2013;13(5):415–420. doi: 10.1007/s11882-013-0373-9.

24. Firszt R., Francisco D., Church T.D., Thomas J.M., Ingram J.L., Kraft M. Interleukin-13 induces collagen type-1 expression through matrix metalloproteinase-2 and transforming growth factor-β1 in airway fibroblasts in asthma. Eur Respir J. 2014;43(2):464–473. doi: 10.1183/09031936.00068712.

25. Fehrenbach H., Wagner C., Wegmann M. Airway remodeling in asthma: what really matters. Cell Tissue Res. 2017;367(3):551–569. doi: 10.1007/s00441-016-2566-8.

26. Agache I., Akdis C., Akdis M., Canonica G.W., Casale T., Chivato T. et al. EAACI Biologicals Guidelines-Recommendations for severe asthma. Allergy. 2020 Jun 2. doi: 10.1111/all.14425.

27. Seys S.F., Scheers H., Van den Brande P., Marijsse G., Dilissen E., Van Den Bergh A. et al. Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients. Respir Res. 2017;18(1):39. doi: 10.1186/s12931-017-0524-y.

28. Woodruff P.G., Modrek B., Choy D.F., Jia G., Abbas A.R., Ellwanger A. et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180(8):796. Am J Respir Crit Care Med. 2009;180(5):388–395. doi: 10.1164/rccm.200903-0392OC.

29. Peters M.C., Mekonnen Z.K., Yuan S., Bhakta N.R., Woodruff P.G., Fahy J.V. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J Allergy Clin Immunol. 2014;133(2):388–394. doi: 10.1016/j.jaci.2013.07.036.

30. Robinson D., Humbert M., Buhl R., Cruz A.A., Inoue H., Korom S. et al. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy. 2017;47(2):161–175. doi: 10.1111/cea.12880.

31. McGregor M.C., Krings J.G., Nair P., Castro M. Role of Biologics in Asthma. Am J Respir Crit Care Med. 2019;199(4):433–445. doi: 10.1164/rccm.201810-1944CI.

32. Fajt M.L., Wenzel S.E. Development of New Therapies for Severe Asthma. Allergy Asthma Immunol Res. 2017;9(1):3–14. doi: 10.4168/aair.2017.9.1.3.

33. Small P., Keith P.K., Kim H. Allergic rhinitis. Allergy Asthma Clin Immunol. 2018;14(S2):51. doi: 10.1186/s13223-018-0280-7.

34. Giavina-Bianchi P., Aun M.V., Takejima P., Kalil J., Agondi R.C. United airway disease: current perspectives. J Asthma Allergy. 2016;9:93–100. doi: 10.2147/JAA.S81541.

35. Samitas K., Carter A., Kariyawasam H.H., Xanthou G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: The one airway concept revisited. Allergy. 2018;73(5):993–1002. doi: 10.1111/all.13373.

36. Eifan A.O., Durham S.R. Pathogenesis of rhinitis. Clin Exp Allergy. 2016;46(9):1139–1151. doi: 10.1111/cea.12780.

37. Stevens W.W., Peters A.T., Tan B.K., Klingler A.I., Poposki J.A., Hulse K.E., Grammer L.C. et al. Associations Between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis. J Allergy Clin Immunol Pract. 2019;7(8):2812–2820.e3. doi: 10.1016/j.jaip.2019.05.009.

38. Nenasheva N.M., Kurbacheva O.M., Avdeev S.N., Fedosenko S.V., Emelyanov A.V., Belevskiy A.S. et al. Practical recommendations for choosing an immunobiological preparation for the treatment of severe bronchial asthma of T2-endotype. Рulmonologiya = Russian Pulmonology. 2020;30(2):227–244. (In Russ.) doi: 10.18093/0869-0189-2020-30-2-227-244.

39. Bice J.B., Leechawengwongs E., Montanaro A. Biologic targeted therapy in allergic asthma. Ann Allergy Asthma Immunol. 2014;112(2):108–115. doi: 10.1016/j.anai.2013.12.013.

40. Castro M., Corren J., Pavord I.D., Maspero J., Wenzel S., Rabe K.F. et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med. 2018;378(26):2486–2496.

41. Israel E., Reddel H.K. Severe and Difficult-to-Treat Asthma in Adults. N Engl J Med. 2017;377(10):965–976. doi: 10.1056/NEJMra1608969.

42. Rabe K.F., Nair P., Brusselle G., Maspero J.F., Castro M., Sher L. et al. Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. N Engl J Med. 2018;378(26):2475–2485. doi: 10.1056/NEJMoa1804093.

43. Shinkai A., Yoshisue H., Koike M., Shoji E., Nakagawa S., Saito A. et al. A novel human CC chemokine, eotaxin-3, which is expressed in IL-4- stimulated vascular endothelial cells, exhibits potent activity toward eosinophils. J Immunol. 1999;163(3):1602–1610. Available at: https://pubmed.ncbi.nlm.nih.gov/10415065.

44. Yoshifuku K., Matsune S., Ohori J., Sagara Y., Fukuiwa T., Kurono Y. IL-4 and TNF-alpha increased the secretion of eotaxin from cultured fibroblasts of nasal polyps with eosinophil infiltration. Rhinology. 2007;45(3):235–241. Available at: https://pubmed.ncbi.nlm.nih.gov/17956026.

45. Bachert C., Han J.K., Desrosiers M., Hellings P.W., Amin N., Lee S.E. et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019;394(10209):1638–1650. doi: 10.1016/S0140-6736(19)31881-1.

46. Fokkens W.J., Lund V.J., Hopkins C., Hellings P.W., Kern R., Reitsma S. et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(S29):1–464. doi: 10.4193/Rhin20.600.

47. Gooderham M.J., Hong H.C., Eshtiaghi P., Papp K.A. Dupilumab: A review of its use in the treatment of atopic dermatitis. J Am Acad Dermatol. 2018;78(3S1):28–36. doi: 10.1016/j.jaad.2017.12.022.

48. Beck L.A., Thaçi D., Deleuran M., Blauvelt A., Bissonnette R., de BruinWeller M. et al. Dupilumab Provides Favorable Safety and Sustained Efficacy for up to 3 Years in an Open-Label Study of Adults with Moderate-to-Severe Atopic Dermatitis. Am J Clin Dermatol. 2020;21(4):567– 577. doi: 10.1007/s40257-020-00527-x.


Review

For citations:


Kuzubova NA, Titova ON. T2-associated diseases: focus on the comorbid patient. Meditsinskiy sovet = Medical Council. 2020;(17):57-64. (In Russ.) https://doi.org/10.21518/2079-701X-2020-17-57-64

Views: 1681


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)