Goat milk in the diet of children with gastrointestinal functional disorders
https://doi.org/10.21518/2079-701X-2020-18-103-109
Abstract
For correction of nutrition in children with functional gastrointestinal disorders, in the absence of data for intolerance of cow’s or goat’s milk proteins formulas based on goat’s milk may be recommended. In natural goat milk there are 14 kinds of oligosaccharides, and 5 of them are identical to breast milk oligosaccharides. The main serum protein of goat milk is α-lactalbumin. The dominating casein fraction of goat milk as well as breast milk is ß-casein. Relatively high content of albumins contributes to the formation of softer, smaller clots and small loose flakes. On the Russian market, goat milk based formulas include products that meet all standards established for infant formulas. The article contains data on goat milk mixtures with an updated formula of protein component. All the formulas of this mixture have reduced the total amount of protein and increased the content of whey protein fraction. Instead of palm oil coconut oil was added to the mixture, while the fat component has not changed its structure, maintaining 42% beta-palmitate, doubled the content of docosahexaenoic acid. The lactose content has been increased, which makes the carbohydrate profile of the mixes closer to breast milk, where the lactose content reaches 95%. In accordance with modern requirements, there were changes in vitamin and mineral composition of formulas, the content of vitamins D3, C, B6, calcium and iron was increased. The effectiveness of this mixture has been studied in young children with functional disorders of the gastrointestinal tract. By the 4th week of taking the mixture, the number of children suffering from colic decreased by 42%, and regurgitation by 30%, there was an improvement in stool consistency. The mixture can be recommended not only for healthy children, but also for children with functional gastrointestinal disorders.
About the Authors
I. N. ZakharovaRussian Federation
Dr. of Sci. (Med.), Professor, Honored Doctor of Russia, Head of the Department of Pediatrics named after G.N. Speransky
2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993, Russia
N. G. Sugyan
Russian Federation
Cand. of Sci. (Med.), Associate Professor of Pediatrics at the Department of Pediatrics named after G.N. Speransky
2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993, Russia
A. P. Glotova
Russian Federation
pediatrician, clinical resident of Pediatrics at the Department of Pediatrics named after G.N. Speransky
2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993, Russia
References
1. Benninga M.A., Faure C., Hyman P.E., St. James Roberts I., Schechter N.L., Nurko S. Childhood functional gastrointestinal disorders: neonate/toddler. Gastroenterology. 2016;150(6):1443– 1455.e2. doi: 10.1053/j.gastro.2016.02.016.
2. Mahon J., Lifschitz C., Ludwig T., Thapar N., Glanville J., Miqdady M. et al. The costs of functional gastrointestinal disorders and related signs and symptoms in infants: a systematic literature review and cost calculation for England. BMJ Open. 2017;7:e015594. doi: 10.1136/bmjopen-2016-015594.
3. Iacono G., Merolla R., D’Amico D., Bonci E., Cavataio F., Di Prima L. et al. Gastrointestinal symptoms in infancy: a population-based prospective study. Dig Liver Dis. 2005;37(6):432–438. doi: 10.1016/j.dld.2005.01.009.
4. Vandenplas Y., Abkari A., Bellaiche M., Benninga M., Chouraqui J.P., Çokura F. et al. Prevalence and health outcomes of functional gastrointestinal symptoms in infants from birth to 12 months of age. J Pediatr Gastroenterol Nutr. 2015;61(5):531–537. doi: 10.1097/MPG.0000000000000949.
5. Canivet C., Hagander B., Jakobsson I., Lanke J. Infantile colic – less common than previously estimated? Acta Paediatr. 1996;85(4):454–458. doi: 10.1111/j.1651-2227.1996.tb14060.x.
6. Savino F. Focus on infantile colic. Acta Paediatr. 2007;96(9):1259–1264. doi: 10.1111/j.1651-2227.2007.00428.x.
7. Shamir R., St James-Roberts I., Di Lorenzo C., Burns A.J., Thapar N., Indrio F. et al. Infant crying, colic, and gastrointestinal discomfort in early childhood: a review of the evidence and most plausible mechanisms. J Pediatr Gastroenterol Nutr. 2013;57(Suppl. 1):1–45. doi: 10.1097/MPG.0b013e3182a154ff.
8. Räihä H., Lehtonen L., Huhtala V., Saleva K., Korvenranta H. Excessively crying infant in the family: mother-infant, father-infant and motherfather interaction. Child Care Health Dev. 2002;28(5):419–429. doi: 10.1046/j.1365-2214.2002.00292.x.
9. Akman I., Kusçu K., Ozdemir N., Yurdakul Z., Solakoglu M., Orhan L. et al. Mothers’ postpartum psychological adjustment and infantile colic. Arch Dis Child. 2006;91(5):417–419. doi: 10.1136/adc.2005.083790.
10. Delplanque B., Gibson R., Koletzko B., Lapillonne A., Strandvik B. Lipid quality in infant nutrition: current knowledge and future opportunities. J Pediatr Gastroenterol Nutr. 2015;61(1):8–17. doi: 10.1097/MPG.0000000000000818.
11. Koletzko B. Human milk lipids. Ann Nutr Metab. 2016;69(Suppl. 2):28–40. doi: 10.1159/000452819.
12. Zou L., Pande G., Akoh C.C. Infant formula fat analogs and human milk fat: new focus on infant developmental needs. Annu Rev Food Sci Technol. 2016;7:139–165. doi: 10.1146/annurev-food-041715-033120.
13. Breckenridge W.C., Marai L., Kuksis A. Triglyceride structure of human milk fat. Can J Biochem. 1969;47(8):761–769. doi: 10.1139/o69-118.
14. Mattson F.H., Volpenhein R.A. The specific distribution of fatty acids in the glycerides of vegetable fats. J Biol Chem. 1961;236(7):1891–1894. Available at: https://www.jbc.org/content/236/7/1891.full.pdf.
15. Iwasaki Y., Yamane T. Enzymatic synthesis of structured lipids. Adv Biochem Eng Biotechnol. 2004;90:151–171. doi: 10.1007/b94196.
16. Yaron S., Shachar D., Abramas L., Riskin A., Bader D., Litmanovitz I. et al. Effect of high β-palmitate content in infant formula on the intestinal microbiota of term infants. J Pediatr Gastroenterol Nutr. 2013;56(4):376–381. doi: 10.1097/MPG.0b013e31827e1ee2.
17. Smilowitz J.T., Lebrilla C.B., Mills D.A., German J.B., Freeman S.L. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr. 2014;34:143–169. doi: 10.1146/annurevnutr-071813-105721.
18. Bode L., Jantscher-Krenn E. Structure-function relationships of human milk oligosaccharides. Adv Nutr. 2012;3(3):383–391. doi: 10.3945/an.111.001404.
19. Thurl S., Munzert M., Boehm G., Matthews C., Stahl B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev. 2017;75(11):920–933. doi: 10.1093/nutrit/nux044.
20. Newburg D.S., Ruiz-Palacios G.M., Morrow A.L. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr. 2005;25:37–58. doi: 10.1146/annurev.nutr.25.050304.092553.
21. Abrahams S.W., Labbok M.H. Breastfeeding and otitis media: A review of recent evidence. Curr Allergy Asthma Rep. 2011;11:508–512. doi: 10.1007/s11882-011-0218-3.
22. Downham M.A., Scott R., Sims D.G., Webb J.K., Gardner P.S. Breastfeeding protects against respiratory syncytial virus infections. Br Med J. 1976;2:274–276. doi: 10.1136/bmj.2.6030.274.
23. Martin-Sosa S., Martin M.J., Hueso P. The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. J Nutr. 2002;132(10):3067–3072. doi: 10.1093/jn/131.10.3067.
24. Trompette A., Gollwitzer E. S., Yadava K., Sichelstiel A. K., Sprenger N., Ngom-Bru C. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–166. doi: 10.1038/nm.3444.
25. Donovan S.M., Comstock S.S. Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Ann Nutr Metab. 2016;69(Suppl. 2):42–51. doi: 10.1159/000452818.
26. Xiao L., van’t Land B., van de Worp W.R.P.H., Stahl B., Folkerts G., Garssen J. Early-Life Nutritional Factors and Mucosal Immunity in the Development of Autoimmune Diabetes. Front Immunol. 2017;8:1219. doi: 10.3389/fimmu.2017.01219.
27. Zuurveld M., van Witzenburg N.P., Garssen J., Folkerts G., Stahl B., van’t Land B., Willemsen L.E.M. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Frontiers in Immunology. 2020;11:801. doi: 10.3389/fimmu.2020.00801.
28. Meyrand M., Dallas D.C., Caillat H., Bouvier F., Martin P., Barile D. Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize as1-casein. Small Rumin Res. 2013;113(2–3):411–420. doi: 10.1016/j.smallrumres.2013.03.014.
29. Lara-Villoslada, F., Debras E., Nieto A., Concha A., Gálvez J., López-Huertas E. et al. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis. Clin Nutr. 2006;25(3):477–488. doi: 10.1016/j.clnu.2005.11.004.
30. Daddaoua A., Puerta V., Requena P., Martínez-Férez A., Guadix E., de Medina F.S. et al. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J Nutr. 2006;136(3):672–676. doi: 10.1093/jn/136.3.672.
31. Hess J.R., Greenberg N.A. The Role of nucleotides in the immune and gastrointestinal systems potential clinical applications. Nutr Clin Pract. 2012;27(2):281–294. doi: 10.1177/0884533611434933.
32. Buck R.H., Thomas D.L., Winship T.R., Cordle C.T., Kuchan M.J., Baggs G.E. et al. Effect of dietary ribonucleotides on infant immune status. Part 2: Immune cell development. Pediatr Res. 2004;56(6):891–900. doi: 10.1203/01.PDR.0000145577.03287.FA.
33. Yau K.I., Huang C.-B., Chen W., Chen Sh.-J., Chou Y.-H., Huang F.-Y. et al. Effect of nucleotides on diarrhea and immune responses in healthy term infants in Taiwan. J Pediatr Gastroenterol Nutr. 2003;36(1):37–43. doi: 10.1097/00005176-200301000-00009.
34. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2012b. Scientific Opinion on the suitability of goat milk protein as a source of protein in infant formulae and in follow‐on formulae. EFSA J. 2012;10(3):2603. doi: 10.2903/j.efsa.2012.2603.
35. Jenness R. Composition and characteristics of goat milk. J Dairy Sci. 1980;63:1605–1630. doi: 10.3168/jds.S0022-0302(80)83125-0.
36. Bevilacqua C., Martin P., Candalh C., Fauquant J., Piot M., Roucayrol A.M. et al. Goat’s milk of defective alpha (sl)-casein genotype decreases intestinal and systemic sensitization to beta-lactoglobulin in guinea pigs. J Dairy Res. 2001;68(2):217–227. doi: 10.1017/s0022029901004861.
37. Haenlein G.F.W. Goat milk in human nutrition. Small Rumin Res. 2004;51(2):155–163. doi: 10.1016/j.smallrumres.2003.08.010.
38. Xu M., Wei L., Dai Z., Zhang Y., Li Y., Wang J. Effects of goat milk-based formula on development in weaned rats. Food Nutr Res. 2015;59:28610. doi: 10.3402/fnr.v59.28610.
39. Zakharova I.N., Sugyan N.G., Berezhnaya I.V. Functional gastrointestinal disorders in the infants: diagnostics criteria and approaches to the dietary therapy. Rossiyskiy Vestnik Perinatologii i Pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2018;63(1):113–121. (In Russ.) doi: 10.21508/1027-4065-2018-63-1-113-121.
Review
For citations:
Zakharova IN, Sugyan NG, Glotova AP. Goat milk in the diet of children with gastrointestinal functional disorders. Meditsinskiy sovet = Medical Council. 2020;(18):103-109. (In Russ.) https://doi.org/10.21518/2079-701X-2020-18-103-109