Impact of compliance with cholecalciferol administration on the incidence of respiratory infections in young children
https://doi.org/10.21518/2079-701X-2020-18-142-150
Abstract
Introduction. Data on the vitamin D receptors (VDR) found on the surface of a large number of cell types of the human body were first published several decades ago, which served as a prerequisite to study the role of vitamin D in the development of some diseases, including infections.
Objective of the study.Evaluate the relationship between administration of cholecalciferol supplements, the synthesis of defensins, and the incidence and morbidity patterns of acute respiratory infections (ARI) in young children.
Material and methods.108 healthy children aged 1 month to 3 years were examined, of which 34 (31.5%) were vitamin D sufficient, 40 (37.0%) had a vitamin D insufficiency, 27 (25.0%) had a vitamin D deficiency and 7 (6.5%) children had severe vitamin D deficiency. After the course of treatment of vitamin D deficiency with therapeutic doses, all patients were prescribed prophylactic doses of cholecalciferol supplements (1000 IU/day) for a 6-month course.
Results. Therapeutic doses of cholecalciferol promoted β1 and β2-defensin expression; a direct correlation was found between the daily dose of vitamin D and the increase of β2-defensin expression (r = 0.34, p <0.05). Administration of cholecalciferol in the prophylactic dose of 1000 IU/day for 6 months was accompanied by the further increase in antimicrobial peptide (AMP) production, which resulted in the increase of the β1-defensin level by 2.4 times (p <0.001) and β2-defensin level by 2.5 times (p <0.001) as compared with the baseline levels. The incidence of respiratory morbidity amounted to 1.7 ± 0.2 episodes every 6 months against the background of ongoing cholecalciferol supplementation. The number of patients, who were not infected, was significantly more in the group of children with optimal vitamin D status, than in the groups of children with vitamin D insufficiency and deficiency.
Conclusions. Administration of vitamin D supplements induces antimicrobial peptide expression and reduces the frequency and severity of acute respiratory infections in young children.
About the Authors
I. N. ZakharovaRussian Federation
Dr. of Sci. (Med.), Professor, Honoured Doctor of the Russian Federation, Head of the Department of Pediatrics with the course of polyclinic pediatrics named after G.N. Speransky
2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993, Russia
A. N. Tsutsaeva
Russian Federation
Assistant of the Department of Faculty Pediatrics
310, Mir St., Stavropol, 355017, Russia
V. A. Kuryaninova
Russian Federation
Cand. of Sci. (Med.), Assistant Professor of the Department of Propaedeutics of Children’s Diseases
310, Mir St., Stavropol, 355017, Russia
L. Ya. Klimov
Russian Federation
Cand. of Sci. (Med.), Assistant Professorhead of the Department of Pediatrics
310, Mir St., Stavropol, 355017, Russia
S. V. Dolbnya
Russian Federation
Cand. of Sci. (Med.), Assistant Professor of the Department of Pediatrics
310, Mir St., Stavropol, 355017, Russia
A. L. Zaplatnikov
Russian Federation
Dr. of Sci. (Med.), Professor, vice-rector for academic work, head of the Department of Neonatology
2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993, Russia
N. E. Verisokina
Russian Federation
Assistant Professor of the Department of Pediatrics
310, Mir St., Stavropol, 355017, Russia
Sh. O. Kipkeev
Russian Federation
pediatrician, applicant of the Department of Faculty Pediatrics
310, Mir St., Stavropol, 355017, Russia
A. A. Dyatlova
Russian Federation
student of the Department of Pediatrics
310, Mir St., Stavropol, 355017, Russia
D. V. Bobryshev
Russian Federation
Cand. of Sci. (Med.), Head of the Center for Personalized Medicine
310, Mira St., Stavropol, 355017, Russia
M. E. Ponomareva
Russian Federation
student of the pediatric faculty
310, Mira St., Stavropol, 355017, Russia
References
1. Holick M.F. Vitamin D: extraskeletal health. Rheum Dis Clin North Am. 2012;38(1):141–160. doi: 10.1016/j.rdc.2012.03.013.
2. Zakharova I.N., Klimov L.Ya., Kasyanova A.N., Kur’yaninova V.A., Dolbnya S.V., Ivanova A.V. et al. Modern conception about vitamin D immunotropic effects. Voprosy prakticheskoy pediatrii = Clinical Practice in Pediatrics. 2019;14(1):7–17. (In Russ.) doi: 10.20953/1817-7646-2019-1-7-17.
3. Peelen E., Knippenberg S., Muris A.H., Thewissen M., Smolders J., Telvaert J. et al. Effects of vitamin D on the peripheral adaptive immune system: a review. Autoimmun Rev. 2011;10(12):733–743. doi: 10.1016/j.autrev.2011.05.002.
4. Dolbnya S.V., Dyatlova A.A., Klimov L.Ya., Kondratieva E.I., Kuryaninova V.A.; Tsutsaeva A.N. et al. Features of vitamin D provision of children with cystic fibrosis residing in the south of Russia in summer. Meditsinskiy vestnik Severnogo Kavkaza = Medical News of the North Caucasus. 2020;15(2):215–219. (In Russ.) doi: 10.14300/mnnc.2020.15051.
5. Provvedini D.M., Tsoukas C.D., Deftos L.J., Manolagas S.C. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science. 1983;221(4616):1181–1183. doi: 10.1126/science.6310748.
6. Carlberg C. Nutrigenomics of vitamin D. Nutrients. 2019;11(3):E676. doi: 10.3390/nu11030676.
7. Dankers W., Colin E.M., van Hamburg J.P., Lubberts E. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential. Front Immunol. 2017;7:697. doi: 10.3389/fimmu.2016.00697.
8. Zakharova I.N., Maltsev S.V., Zaplatnikov A.L., Klimov L.YA., Pampura A.N., Kuryaninova V.A. et al. Influence of vitamin D on the immune response of the organism. Pediatriya. Consilium Medicum = Pediatrics. Consilium Medicum. 2020;(2):29–37. (In Russ.) doi: 10.26442/26586630.2020.2.200238.
9. Chen Y., Liu W., Sun T., Huang Y., Wang Y., Deb D.K. et al. 1,25-dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages. J Immunol. 2013;190(7):3687–3695. doi: 10.4049/jimmunol.1203273.
10. Van der Aar A.M., Sibiryak D.S., Bakdash G., van Capel T.M., van der Kleij H.P., Opstelten D.J. et al. Vitamin D3 targets epidermal and dermal dendritic cells for induction of distinct regulatory T cells. J Allergy Clin Immunol. 2011;127(6):1532–1540. doi: 10.1016/j.jaci.2011.01.068.
11. Von Essen M.R., Kongsbak M., Schjerling P., Olgaard K., Odum N., Geisler C. Vitamin D controls T-cell antigen receptor signaling and activation of human T cells. Nat Immunol. 2010;11(4):344–349. doi: 10.1038/ni.1851.
12. Maltsev S.V., Mansurova G.S. Vitamin D: modern times, modern view. Pediatriya = Pediatria. 2020;99(4):195–200. (In Russ.) Available at: https://pediatriajournal.ru/archive?show=377§ion=5968.
13. Zaharova I.N., Klimov L.YA., Kasyanova A.N., Yagupova A.V., Kuryaninova V.A., Dolbnya S.V. et al. The role of antimicrobial peptides and vitamin D antiinfection protection formation. Pediatriya = Pediatria. 2017;96(4):171–179. Available at: https://cyberleninka.ru/article/n/rol-antimikrobnyh-peptidovi-vitamina-d-v-formirovanii-protivoinfektsionnoy-zaschity.
14. Agier J., Brzezinska-Blaszczyk E. Cathelicidins and defensins regulate mast cell antimicrobial activity. Postepy Hig Med Dosw (Online). 2016;70(0):618–636. doi: 10.5604/17322693.1205357.
15. Zakharova I.N., Tsutsayeva A.N., Klimov L.Y., Kur’yaninova V.A., Dolbnya S.V., Zaplatnikov А.L. et al. Vitamin D and defensins production in infants. Meditsinskiy sovet = Medical Council. 2020;(1):158–169. (In Russ.) doi: 10.21518/2079-701X-2020-1-158-169.
16. Wang T.T., Nestel F.P., Bourdeau V., Nagai Y., Wang Q., Liao J. et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173(5):2909–2012. doi: 10.4049/jimmunol.173.5.2909.
17. Woo J.I., Kil S.H., Brough D.E., Lee Y.J., Lim D.J., Moon S.K. Therapeutic potential of adenovirus-mediated delivery of β-defensin 2 for experimental otitis media. Innate Immun. 2015;21(2):215–224. doi: 10.1177/1753425914534002.
18. ee H.Y., Andalibi A., Webster P., Moon S.K., Teufert K., Kang S.H. et al. Antimicrobial activity of innate immune molecules against Streptococcus pneumoniae, Moraxella catarrhalis and nontypeable Haemophilus influenza. BMC Infect Dis. 2004;4:12. doi: 10.1186/1471-2334-4-12.
19. Kota S., Sabbah A., Chang T.H., Harnack R., Xiang Y., Meng X., Bose S. Role of human beta-defensin-2 during tumor necrosis factor-alpha/NF-kappa B-mediated innate antiviral response against human respiratory syncytial virus. J Biol Chem. 2008;283(33):22417–22429. doi: 10.1074/jbc.M710415200.
20. Aibana O., Huang C.-C., Aboud S., Arnedo-Pena A.C., Becerra M.C., BellidoBlasco J.B. et al. Vitamin D status and risk of incident tuberculosis disease: A nested case-control study, systematic review, and individual-participant data meta-analysis. PLoS Med. 2019;16(9):e1002907. doi: 10.1371/journal.pmed.1002907.
21. Gou X., Pan L., Tang F., Gao H., Xiao D. The association between vitamin D status and tuberculosis in children: A meta-analysis. Medicine (Baltimore). 2018;97(35):e12179. doi: 10.1097/MD.0000000000012179.
22. Zakharova I.N., Klimov L.Ya., Kasyanova A.N., Kuryaninova V.A., Dolbnya S.V., Gorelov A.V. et al. Interrelationships between the incidence of infectious diseases and vitamin D deficiency: the current state of the problem. Infektsionnye bolezni = Infectious Diseases. 2018;16(3):69–78. (In Russ.) doi: 10.20953/1729-9225-2018-3-69-78.
23. Iftikhar R., Kamran S.M., Qadir A., Haider E., Bin Usman H. Vitamin D deficiency in patients with tuberculosis. J Coll Physicians Surg Pak. 2013;23(10):780–783. doi: 11.2013/jcpsp.780783.
24. Sabetta J.R., DePetrillo P., Cipriani R.J., Smardin J., Burns L.A., Landry M.L. Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults. PLoS One. 2010;5(6):e11088. doi: 10.1371/journal.pone.0011088.
25. Berry D.J., Hesketh K., Power C., Hyppönen E. Vitamin D status has a linear association with seasonal infections and lung function in British adults. Br J Nutr. 2011;106(9):1433–1440. doi: 10.1017/S0007114511001991.
26. Wayse V., Yousafzai A., Mogale K., Filteau S. Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. Eur J Clin Nutr. 2004;58(4):563–567. doi: 10.1038/sj.ejcn.1601845.
27. Roth D.E., Shah R., Black R.E., Baqui A.H. Vitamin D status and acute lower respiratory infection in early childhood in Sylhet, Bangladesh. Acta Paediatr. 2010;99(3):389–393. doi: 10.1111/j.1651-2227.2009.01594.x.
28. Karatekin G., Kaya A., Salihoğlu Ö., Balci H., Nuhoğlu A. Association of subclinical vitamin D deficiency in newborns with acute lower respiratory infection and their mothers. Eur J Clin Nutr. 2009;63(4):473–477. doi: 10.1038/sj.ejcn.1602960.
29. Bergman P., Lindh A.U., Björkhem-Bergman L., Lindh J.D. Vitamin D and respiratory tract infections: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2013;8(6):e65835. doi: 10.1371/journal.pone.0065835.
30. Zhou Y.F., Luo B.A., Qin L.L. The association between vitamin D deficiency and community-acquired pneumonia: A meta-analysis of observational studies. Medicine (Baltimore). 2019;98(38):e17252. doi: 10.1097/MD.0000000000017252.
31. Chowdhury R., Taneja S., Bhandari N., Sinha B., Upadhyay R.P., Bhan M.K., Strand T.A. Vitamin-D deficiency predicts infections in young north Indian children: A secondary data analysis. PLoS One. 2017;12(3):e0170509. doi: 10.1371/journal.pone.0170509.
32. Furlong K., Omand J., Pitino M., Science M., O’Connor D., Maguire J., Tran D. Vitamin D status and respiratory tract infections: a systematic review and meta-analysis of observational evidence. FASEB J. 2015;29:252–255. doi: 10.1096/fasebj.29.1_supplement.252.5.
33. Lu D., Zhang J., Ma C., Yue Y., Zou Z., Yu C., Yin F. Link between communityacquired pneumonia and vitamin D levels in older patients. Z Gerontol Geriatr. 2018;51(4):435–439. doi: 10.1007/s00391-017-1237-z.
34. Pletz M.W., Terkamp C., Schumacher U., Rohde G., Schütte H., Welte T., Bals R. Vitamin D deficiency in community-acquired pneumonia: Low levels of 1,25(OH)2D are associated with disease severity. Respir Res. 2014;15(1):53. doi: 10.1186/1465-9921-15-53.
35. Zakharova I.N., Borovik T.E., Vakhlova I.V., Gorelov A.V., Gumenyuk O.I., Gusev E.I. et al. National program “Vitamin D deficiency in children and adolescents of the Russian Federation: modern approaches to correction”. Moscow: Pediatr; 2018. 96 p. (In Russ.) Available at: https://elibrary.ru/item.asp?id=34881251.
36. Zakharova I.N., Klimov L.Y., Dolbnya S.V., Kuryaninova V.A., Maltsev S.V., Malyavskaya S.I. et al. Prolonged reception of cholecalcipherol – the basis of effective prevention of hypovitaminosis D in young years. Meditsinskiy sovet = Medical Council. 2020;(10):16–26. (In Russ.) doi: 10.21518/2079-701X-2020-10-16-26.
37. Georgieva V., Kamolvit W., Herthelius M., Lüthje P., Brauner A., Chromek M. Association between vitamin D, antimicrobial peptides and urinary tract infection in infants and young children. Acta Paediatr. 2019;108(3):551–556. doi: 10.1111/apa.14499.
Review
For citations:
Zakharova IN, Tsutsaeva AN, Kuryaninova VA, Klimov LY, Dolbnya SV, Zaplatnikov AL, Verisokina NE, Kipkeev SO, Dyatlova AA, Bobryshev DV, Ponomareva ME. Impact of compliance with cholecalciferol administration on the incidence of respiratory infections in young children. Meditsinskiy sovet = Medical Council. 2020;(18):142-150. (In Russ.) https://doi.org/10.21518/2079-701X-2020-18-142-150