Cognitive impairment in COVID-19 survivors
https://doi.org/10.21518/2079-701X-2021-4-69-77
Abstract
A new 2019 coronavirus disease has been spreading worldwide for more than a year, with a high risk of infection and death. Various sequelae and complications can develop in COVID-19 survivors, lasting from several weeks to several months after initial recovery, affecting different organs and systems. Various sequelae and complications can occur in COVID-19 survivors not only in adults and the elderly, but also in young people. A wide range of neurological manifestations of COVID-19 are now described in the available literature. The incidence of selected neurological symptoms, syndromes and nosological forms in individuals both in the acute period of COVID-19 disease and in the short- and long-term follow-up of these patients is presented. In this article, cognitive impairments occurring in individuals who have had coronavirus disease are discussed in depth. Data on the prevalence of cognitive impairment in different regions and at different periods of the disease are presented. The main possible pathophysiological processes and risk factors for the development of cognitive impairment in COVID-19 are described. Possible ways of drug and non-drug rehabilitation of patients with cognitive impairment in coronavirus infection that is a new problem of modern medicine are considered. Attention is also paid to neuroprotection as one of the therapy areas.
About the Authors
N. V. PizovaRussian Federation
Nataliia V. Pizova, Dr. Sci. (Med.), Professor, Professor of the Department of Nervous Diseases with Medical Genetics and Neurosurgery
5, Revolutsionnaya St., Yaroslavl, 150000
N. A. Pizov
Russian Federation
Nikolai A. Pizov, Postgraduate Student of the Department of Nervous Diseases with Medical Genetics and Neurosurgery
5, Revolutsionnaya St., Yaroslavl, 150000
A. V. Pizov
Russian Federation
Aleksandr V. Pizov, Cand. Sci. (Biol.), Associate Professor of the Department of Medicine
108/1, Republikanskaya St., Yaroslavl, 150000
References
1. Goërtz Y.M.J., Van Herck M., Delbressine J.M., Vaes A.W., Meys R., Machado F.V.C. et al. Persistent Symptoms 3 Months after a SARS-CoV-2 Infection: the PostCOVID-19 Syndrome? ERJ Open Res. 2020;6(4):00542–2020. doi: 10.1183/23120541.00542-2020.
2. Roser M., Ritchie H., Ortiz-Ospina E., Hasell J. Coronavirus Pandemic (COVID-19). OurWorldInData.org. 2020. Available at: https://ourworldindata.org/coronavirus.
3. Carfì A., Bernabei R., Landi F. Persistent Symptoms in Patients after Acute COVID-19. JAMA. 2020;324(6):603–605. doi: 10.1001/jama.2020.12603.
4. Sigfrid L., Cevik M., Jesudason E., Lim W.S., Rello J., Amuasi J. et al. What Is the Recovery Rate and Risk of Long-Term Consequences Following a Diagnosis of COVID-19? A Harmonised, Global Longitudinal Observational Study Protocol. BMJ Open. 2021;11(3):e043887. doi: 10.1136/bmjopen-2020-043887.
5. De Lorenzo R., Conte C., Lanzani C., Benedetti F., Roveri L., Mazza M.G. et al. Residual Clinical Damage after COVID-19: A Retrospective and Prospective Observational Cohort Study. PLoS One. 2020;15(10):e0239570. doi: 10.1371/journal.pone.0239570.
6. Pleasure S.J., Green A.J., Josephson S.A. The Spectrum of Neurologic Disease in the Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic Infection: Neurologists Move to the Frontlines. JAMA Neurol. 2020;77(6):679–680. doi: 10.1001/jamaneurol.2020.1065.
7. Liu K., Pan M., Xiao Z., Xu X. Neurological Manifestations of the Coronavirus (SARS-CoV-2) Pandemic 2019–2020. J Neurol Neurosurg Psychiatry. 2020;91(6):669–670. doi: 10.1136/jnnp-2020-323177.
8. Ogier M., Andéol G., Sagui E., Dal Bo G. How to Detect and Track Chronic Neurologic Sequelae of COVID-19? Use of Auditory Brainstem Responses and Neuroimaging for Long-Term Patient Follow-Up. Brain Behav Immun Health. 2020;5:100081. doi: 10.1016/j.bbih.2020.100081.
9. Bridwell R., Long B., Gottlieb M. Neurologic Complications of COVID-19. Am J Emerg Med. 2020;38(7):1549.e3–1549.e7. doi: 10.1016/j.ajem.2020.05.024.
10. Rayner C., Lokugamage A., Molokhia M. Covid-19: Prolonged and Relapsing Course of Illness Has Implications for Returning Workers. The BMJ Opinion. 2020. Available at: https://blogs.bmj.com/bmj/2020/06/23/covid-19-prolonged-and-relapsing-course-of-illness-has-implications-for-returningworkers/.
11. Islam M.F., Cotler J., Jason L.A. Post-Viral Fatigue and COVID-19: Lessons from Past Epidemics. Fatigue. 2020;8(2):61–69. doi: 10.1080/21641846.2020.1778227.
12. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., Sepulveda R., Rebolledo P.A., Cuapio A., Villapol S. More Than 50 Long-Term Effects of COVID-19: A Systematic Review and meta-Analysis. medRxiv. 2021:2021.01.27.21250617. doi: 10.1101/2021.01.27.21250617.
13. Troyer E.A., Kohn J.N., Hong S. Are We Facing a Crashing Wave of Neuropsychiatric Sequelae of COVID-19? Neuropsychiatric Symptoms and potential Immunologic Mechanisms. Brain Behav Immun. 2020;87:34–39. doi: 10.1016/j.bbi.2020.04.027.
14. Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen C. et al. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med. 2020;382(23):2268–2270. doi: 10.1056/NEJMc2008597.
15. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H. et al. Clinical and Immunological Features of Severe and Moderate Coronavirus Disease 2019. J Clin Invest. 2020;130(5):2620–2629. doi: 10.1172/JCI137244.
16. Iwashyna T.J., Ely E.W., Smith D.M., Langa K.M. Long-Term Cognitive Impairment and Functional Disability among Survivors of Severe Sepsis. JAMA. 2010;304(16):1787–1794. doi: 10.1001/jama.2010.1553.
17. Widmann C.N., Heneka M.T. Long-Term Cerebral Consequences of Sepsis. Lancet Neurol. 2014;13(6):630–636. doi: 10.1016/S1474-4422(14)70017-1.
18. Alemanno F., Houdayer E., Parma A., Spina A., Del Forno A., Scatolini A. et al. COVID-19 Cognitive Deficits after Respiratory Assistance in the Subacute Phase: A COVID-Rehabilitation Unit Experience. PLoS One. 2021;16(2):e0246590. doi: 10.1371/journal.pone.0246590.
19. Jaywant A., Vanderlind W.M., Alexopoulos G.S., Fridman C.B., Perlis R.H., Gunning F.M. Frequency and Profile of Objective Cognitive Deficits in Hospitalized Patients Recovering from COVID-19. Neuropsychopharmacology. 2021:1–6. doi: 10.1038/s41386-021-00978-8.
20. Rodriguez-Morales A.J., Cardona-Ospina J.A., Gutierrez-Ocampo E., Villamizar-Pena R., Holguin-Rivera Y., Escalera-Antezana J.P. et al. Clinical, Laboratory and Imaging Features of COVID-19: A Systematic Review and Meta-Analysis. Travel Med Infect Dis. 2020;34:101623. doi: 10.1016/j.tmaid.2020.101623.
21. Girard T.D., Thompson J.L., Pandharipande P.P., Brummel N.E., Jackson J.C., Patel M.B. et al. Clinical Phenotypes of Delirium during Critical Illness and Severity of Subsequent long-Term Cognitive Impairment: A Prospective Cohort Study. Lancet Respir Med. 2018;6(3):213–222. doi: 10.1016/S2213-2600(18)30062-6.
22. Sasannejad C., Ely E.W., Lahiri S. Long-Term Cognitive Impairment after Acute Respiratory Distress Syndrome: A Review of Clinical Impact and Pathophysiological Mechanisms. Crit Care. 2019;23(1):352. doi: 10.1186/s13054-019-2626-z.
23. Hopkins R.O., Weaver L.K., Pope D., Orme J.F. Jr., Bigler E.D., Larson-Lohr V. Neuropsychological Sequelae and Impaired Health Status in Survivors of Severe Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 1999;160(1):50–56. doi: 10.1164/ajrccm.160.1.9708059.
24. Herridge M.S., Moss M., Hough C.L., Hopkins R.O., Rice T.W., Bienvenu O.J. et al. Recovery and Outcomes after the Acute Respiratory Distress Syndrome (ARDS) in Patients and Their Family Caregivers. Intensive Care Med. 2016;42(5):725– 738. doi: 10.1007/s00134-016-4321-8.
25. Wilcox M.E., Brummel N.E., Archer K., Ely E.W., Jackson J.C., Hopkins R.O. Cognitive Dysfunction in ICU Patients: Risk Factors, Predictors, and Rehabilitation Interventions. Crit Care Med. 2013;41(9 Suppl 1):S81–S98. doi: 10.1097/CCM.0b013e3182a16946.
26. Hopkins R.O., Weaver L.K., Collingridge D., Parkinson R.B., Chan K.J., Orme J.F. Two-Year Cognitive, Emotional, and Quality-of-Life Outcomes in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2005;171(4):340–347. doi: 10.1164/rccm.200406-763OC.
27. Pizova N.V., Pizov N.A., Skachkova O.A., Sokolov M.A., Izmaylov I.A., Taramakin R.B. Acute Cerebral Circulatory Disorders and Coronavirus Disease. Meditsinskiy sovet = Medical Council. 2020;(8):18–25. (In Russ.) doi: 10.21518/2079-701X-2020-8-18-25.
28. Ellul M.A., Benjamin L., Singh B., Lant S., Michael B.D., Easton A. et al. Neurological Associations of COVID-19. Lancet Neurol. 2020;19(9):767–783. doi: 10.1016/S1474-4422(20)30221-0.
29. Hernández-Fernández F., Sandoval Valencia H., Barbella-Aponte R.A., Collado-Jiménez R., Ayo-Martín Ó., Barrena C. et al. Cerebrovascular Disease in Patients with COVID-19: Neuroimaging, Histological and Clinical Description. Brain. 2020;143(10):3089–3103. doi: 10.1093/brain/awaa239.
30. Benussi A., Pilotto A., Premi E., Libri I., Giunta M., Agosti C. et al. Clinical Characteristics and Outcomes of Inpatients with Neurologic Disease and COVID-19 in Brescia, Lombardy, Italy. Neurology. 2020;95(7):e910–e920. doi: 10.1212/WNL.0000000000009848.
31. Varatharaj A., Thomas N., Ellul M.A., Davies N.W.S., Pollak T.A., Tenorio E.L. et al. Neurological and Neuropsychiatric Complications of COVID19 in 153 Patients: A UK-Wide Surveillance Study. Lancet Psychiatry. 2020;7(10):875–882. doi: 10.1016/S2215-0366(20)30287-X.
32. Oxley T.J., Mocco J., Majidi S., Kellner C.P., Shoirah H., Singh I.P. et al. LargeVessel Stroke as a Presenting Feature of Covid-19 in the Young. N Engl J Med. 2020;382(20):e60. doi: 10.1056/NEJMc2009787 .
33. Pendlebury S.T., Rothwell P.M. Incidence and Prevalence of Dementia Associated with Transient Ischaemic Attack and Stroke: Analysis of the Population-Based Oxford Vascular Study. Lancet Neurol. 2019;18(3):248–258. doi: 10.1016/S1474-4422(18)30442-3.
34. Mijajlović M.D., Pavlović A., Brainin M., Heiss W.D., Quinn T.J., Ihle-Hansen H.B. et al. Post-Stroke Dementia – A Comprehensive Review. BMC Med. 2017;15(1):11. doi: 10.1186/s12916-017-0779-7.
35. Staekenborg S.S., van Straaten E.C.W, van der Flier W.M, Lane R., Barkhof F., Scheltens P. Small Vessel versus Large Vessel Vascular Dementia: Risk Factors and MRI Findings. J Neurol. 2008;255(11):1644– 1651. doi: 10.1007/s00415-008-0944-1.
36. Sudlow C.L., Warlow C.P. Comparable Studies of the Incidence of Stroke and Its Pathological Types: Results from an International Collaboration. International Stroke Incidence Collaboration. Stroke. 1997;28(3):491–499. doi: 10.1161/01.str.28.3.491.
37. Arciniegas D.B., Anderson C.A. Viral Encephalitis: Neuropsychiatric and Neurobehavioral Aspects. Curr Psychiatry Rep. 2004;6(5):372–379. doi: 10.1007/s11920-004-0024-x.
38. Dubé B., Benton T., Cruess D.G., Evans D.L. Neuropsychiatric Manifestations of HIV Infection and AIDS. J Psychiatry Neurosci. 2005;30(4):237–246. Available at: http://jpn.ca/vol30-issue4/30-4-237/.
39. Hinkin C.H., Castellon S.A., Atkinson J.H., Goodkin K. Neuropsychiatric Aspects of HIV Infection among Older Adults. J Clin Epidemiol. 2001;54(Suppl 1):S44–S52. doi: 10.1016/s0895-4356(01)00446-2.
40. Natoli S., Oliveira V., Calabresi P., Maia L.F., Pisani A. Does SARSCov-2 Invade the Brain? Translational Lessons from Animal Models. Eur J Neurol. 2020;27(9):1764–1773. doi: 10.1111/ene.14277.
41. Paniz-Mondolfi A., Bryce C., Grimes Z., Gordon R.E., Reidy J., Lednicky J. et al. Central Nervous System Involvement by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699–702. doi: 10.1002/jmv.25915.
42. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y. et al. Multiple Organ Infection and the Pathogenesis of SARS. J Exp Med. 2005;202(3):415–424. doi: 10.1084/jem.20050828.
43. Arbour N., Day R., Newcombe J., Talbot P.J. Neuroinvasion by Human Respiratory Coronaviruses. J Virol. 2000;74(19):8913–8921. doi: 10.1007/978-81-322-1777-0_6.
44. Ding Y., He L., Zhang Q., Huang Z., Che X., Hou J. et al. Organ Distribution of Severe Acute Respiratory Syndrome (SARS) Associated Coronavirus (SARS-CoV) in SARS Patients: Implications for Pathogenesis and Virus Transmission Pathways. J Pathol. 2004;203(2):622–630. doi: 10.1002/path.1560.
45. Xu J., Zhong S., Liu J., Li L., Li Y., Wu X. et al. Detection of Severe Acute Respiratory Syndrome Coronavirus in the Brain: Potential Role of the Chemokine Mig in Pathogenesis. Clin Infect Dis. 2005;41(8): 1089–1096. doi: 10.1086/444461.
46. Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7): 995–998. doi: 10.1021/acschemneuro.0c00122.
47. Zhou H., Lu S., Chen J., Wei N., Wang D., Lyu H. et al. The Landscape of Cognitive Function in Recovered COVID-19 Patients. J Psychiatr Res. 2020;129:98–102. doi: 10.1016/j.jpsychires.2020.06.022.
48. Solomon I.H., Normandin E., Bhattacharyya S., Mukerji S.S., Keller K., Ali A.S. et al. Neuropathological Features of Covid-19. N Engl J Med. 2020;383(10):989–992. doi: 10.1056/NEJMc2019373.
49. Coolen T., Lolli V., Sadeghi N., Rovai A., Trotta N., Taccone F.S. et al. Early Postmortem Brain MRI Findings in COVID-19 Non-Survivors. Neurology. 2020;95(14):e2016–e2027. doi: 10.1212/WNL.0000000000010116.
50. Reddy S.T., Garg T., Shah C., Nascimento F.A., Imran R., Kan P. et al. Cerebrovascular Disease in Patients with COVID-19: A Review of the Literature and Case Series. Case Rep Neurol. 2020;12(2):199–209. doi: 10.1159/000508958.
51. Teuwen L.A., Geldhof V., Pasut A., Carmeliet P. COVID-19: the Vasculature Unleashed. Nat Rev Immunol. 2020;20(7):389–391. doi: 10.1038/s41577-020-0343-0.
52. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S. et al. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi: 10.1016/S0140-6736(20)30937-5.
53. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B. et al. A Crucial Role of Angiotensin Converting Enzyme 2 (ACE2) in SARS Coronavirus-Induced Lung Injury. Nat Med. 2005;11(8):875–879. doi: 10.1038/nm1267.
54. Glowacka I., Bertram S., Herzog P., Pfefferle S., Steffen I., Muench M.O. et al. Differential Downregulation of ACE2 by the Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63. J Virol. 2010;84(2):1198–1205. doi: 10.1128/JVI.01248-09.
55. Haga S., Yamamoto N., Nakai-Murakami C., Osawa Y., Tokunaga K., Sata T. et al. Modulation of TNF-α-Converting Enzyme by the Spike Protein of SARS-CoV and ACE2 Induces TNF-α Production and Facilitates Viral Entry. Proc Natl Acad Sci U S A. 2008;105(22):7809–7814. doi: 10.1073/pnas.0711241105.
56. Zoufaly A., Poglitsch M., Aberle J.H., Hoepler W., Seitz T., Traugott M. et al. Human Recombinant Soluble ACE2 in Severe COVID-19. Lancet Respir Med. 2020;8(11):1154–1158. doi: 10.1016/S2213-2600(20)30418-5.
57. Abd El-Aziz T.M., Al-Sabi A., Stockand J.D. Human Recombinant Soluble ACE2 (hrsACE2) Shows Promise for Treating Severe COVID-19. Signal Transduct Target Ther. 2020;5(1):258. doi: 10.1038/s41392-020-00374-6.
58. Kanberg N., Ashton N.J., Andersson L.M., Yilmaz A., Lindh M., Nilsson S. et al. Neurochemical Evidence of Astrocytic and Neuronal Injury Commonly Found in COVID-19. Neurology. 2020;95(12):e1754–e1759. doi: 10.1212/WNL.0000000000010111.
59. Matschke J., Lütgehetmann M., Hagel C., Sperhake J.P., Schröder A.S., Edler C. et al. Neuropathology of Patients with COVID-19 in Germany: A Post-Mortem Case Series. Lancet Neurol. 2020;19(11):919–929. doi: 10.1016/S1474-4422(20)30308-2.
60. Song E., Zhang C., Israelow B., Lu-Culligan A., Prado A.V., Skriabine S. et al. Neuroinvasion of SARS-CoV-2 in Human and Mouse Brain. J Exp Med. 2021;218(3):e20202135. doi: 10.1084/jem.20202135.
61. Heneka M.T., Golenbock D., Latz E., Morgan D., Brown R. Immediate and Long-Term Consequences of COVID-19 Infections for the Development of Neurological Disease. Alzheimers Res Ther. 2020;12(1):69. doi: 10.1186/s13195-020-00640-3.
62. Ivanova G.E., Melnikova E.V., Levin O.S., Khatkova S.E., Khasanova D.R., Yanishevsky S.N. et al. Current Issues in the Rehabilitation of Stroke Patients against the Background of a New Coronavirus Infection (COVID-19). Resolution of the Council of Experts. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. Spetsvypuski = S.S. Korsakov Journal of Neurology and Psychiatry (Special Issues). 2020;120(8–2):81–87. (In Russ.) doi: 10.17116/jnevro202012008281.
63. Levin O.S., Bogolepova A.N. Poststroke Motor and Cognitive Impairments: Clinical Features and Current Approaches to Rehabilitation. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(11):99–107. (In Russ.) doi: 10.17116/jnevro202012011199.
64. Ginsberg M.D. Current Status of Neuroprotection for Cerebral Ischemia. Synoptic Overview. Stroke. 2009;40:S111–S114. doi: 10.1161/STROKEAHA.108.528877.
65. Gusev E.I., Skvortsova V.I. Cerebral Ischemia. Moscow: Meditsina; 2001. 327 p. (In Russ.).
66. Kaduszkiewicz H., Zimmermann T., Beck-Bornholdt H. Cholinesterase Inhibitors for Patients with Alzheimer’s Disease: Systematic Review of Randomized Clinical Trials. BMJ. 2005;331(7512):321–327. doi: 10.1136/bmj.331.7512.321.
67. Piradov M.A., Tanashyan M.M., Domashenko M.A., Maksimova M.Yu. Neuroprotection in Cerebrovascular Diseases: Is It the Search for Life on Mars or a Promising Trend of Treatment? Part 2. Chronic Cerebrovascular Diseases. Annaly klinicheskoy i eksperimental’noy nevrologii = Annals of Clinical and Experimental Neurology. 2015;9(3):10–19. (In Russ) Available at: http://annaly-nevrologii.com/journal/index.php/pathID/article/view/142.
68. Grieb P. Neuroprotective Properties of Citicoline: Facts, Doubts and Unresolved Issues. CNS Drugs. 2014;28(3):185–193. doi: 10.1007/s40263-014-0144-8.
69. Plataras C., Taskiris S., Angelogianni P. Effect of CDP-Choline on Brain AcetylcholineSterase and Na+/K+-ATPase in Adult Rats. Clin Biochem. 2000;33(5):351–357. doi: 10.1016/s0009-9120(00)00084-9.
70. Adibhatla R.M., Hatcher J.F. Citicoline Mechanisms and Clinical Efficacy in Cerebral Ischemia. J Neurosci Res. 2002;70(2):133–139. doi: 10.1002/jnr.10403.
71. Synoradzki K., Grieb P. Citicoline: A Superior Form of Choline? Nutrients. 2019;11(7):1569. doi: 10.3390/nu11071569.
72. Blusztajn J.K., Slack B.E., Mellott T.J. Neuroprotective Actions of Dietary Choline. Nutrients. 2017;9(8):815. doi: doi.org/10.3390/nu9080815.
73. Roohi-Azizi M., Torkaman-Boutorabi A., Akhondzadeh S., Nejatisafa A.-A., Sadat-Shirazi M.-S., Zarrindast M.-R. Influence of Citicoline on CitalopramInduced Antidepressant Activity in depressive-Like Symptoms in Male Mice. Physiol. Behav. 2018;195:151–157. doi: 10.1016/j.physbeh.2018.08.002.
74. Hurtado O., Moro M.A., Cárdenas A., Sanchez V., Fernández-Tomé P., Leza J.C. et al. Neuroprotection Afforded by Prior Citicoline Administration in Experimental Brain Ischemia: Effects on Glutamate Transport. Neurobiol Dis. 2005;18(2):336–345. doi: 10.1016/j.nbd.2004.10.006.
75. D’Orlando K.J., Sandage B.W. Jr. Citicoline (CDP-Choline): Mechanisms of Action and Effects in Ischemic Brain Injury. Neurol Res. 1995;17(4): 281–284. doi: 10.1080/01616412.1995.11740327.
76. Babb S.M., Wald L.L., Cohen B.M., Villafuerte R.A., Gruber S.A., YurgelunTodd D.A., Renshaw P.F. Chronic Citicoline Increases Phosphodiesters in the Brains of Healthy Older Subjects: An in vivo Phosphorus Magnetic Resonance Spectroscopy Study. Psychopharmacology (Berl). 2002;161(3):248–254. doi: 10.1007/s00213-002-1045-y.
77. Gareri P., Castagna A., Cotroneo A.M., Putignano S., De Sarro G., Bruni A.C. The Role of Citicoline in Cognitive Impairment: Pharmacological Characteristics, Possible Advantages, and Doubts for an Old Drug with New Perspectives. Clin Interv Aging. 2015;10:1421–1429. doi: 10.2147/CIA.S87886.
78. Spiers P.A., Myers D., Hochanadel G.S., Lieberman H.R., Wurtman R.J. Citicoline Improves Verbal Memory in Aging. Arch Neurol. 1996;53(5): 441–448. doi: 10.1001/archneur.1996.00550050071026.
79. Cohen R.A., Browndyke J.N., Moser D.J., Paul R.H., Gordon N., Sweet L. LongTerm Citicoline (Cytidine Diphosphate Choline) Use in Patients with Vascular Dementia: Neuroimaging and Neuropsychological Outcomes. Cereb Dis. 2003;16(3):199–204. doi: 10.1159/000071116.
80. Bruce S.E., Werner K., Preston B.F., Baker L.M. Improvements in Concentration, Working Memory and Sustained Attention Following Consumption of a Natural Citicoline-Caffeine Beverage. Int J Food Sci Nutr. 2014;65(8):1003–1007. doi: 10.3109/09637486.2014.940286.
81. Fioravanti M., Yanagi M. Cytidinediphosphocholine (CDP-Choline) for Cognitive and Behavioural Disturbances Associated with Chronic Cerebral Disorders in the Elderly. Cochrane Database Syst Rev. 2005;(2):CD000269. doi: 10.1002/14651858.CD000269.pub3.
82. Jasielski P., Piędel F., Piwek M., Rocka A., Petit V., Rejdak K. Application of Citicoline in Neurological Disorders: A Systematic Review. Nutrients. 2020;12(10):3113. doi: 10.3390/nu12103113.
83. Ostroumova O.D., Alyautdinova I.A., Ostroumova T.M., Ebzeeva E.Yu., Pavleeva E.E. Choosing Optimal Cerebroprotection Strategy for Polymorbid Stroke Patient. Meditsinskiy alfavit = Medical Alphabet. 2020;(2):15–19. (In Russ.) doi: 10.33667/2078-5631-2020-2-15-19.
84. Ostroumova Т.М., Ostroumova О.D., Golovina О.V. Early Signs of Hypertension-Mediated Brain Damage: Case Report and Possibilities of Citicoline. Meditsinskiy alfavit = Medical Alphabet. 2020;1(19): 24–28. (In Russ.) doi: 10.33667/2078-5631-2020-19-24-28.
85. Simpson R., Robinson L. Rehabilitation after Critical Illness in People with COVID-19 Infection. Am J Phys Med Rehabil. 2020;99(6):470–474. doi: 10.1097/PHM.0000000000001443.
86. Murakami F.M., Yamaguti W.P., Onoue M.A., Mendes J.M., Pedrosa R.S., Maida A.L.V. et al. Functional Evolution of Critically Ill Patients Undergoing an Early Rehabilitation Protocol. Rev Bras Ter Intensiva. 2015;27(2):161–169. doi: 10.5935/0103-507X.20150028.
87. Jiménez-Pavón D., Carbonell-Baeza A., Lavie C.J. Physical Exercise as Therapy to Fight against the Mental and Physical Consequences of COVID-19 Quarantine: Special Focus in Older People. Prog Cardiovasc Dis. 2020;63(3):386–388. doi: 10.1016/j.pcad.2020.03.009.
88. Ceravolo M.G., de Sire A., Andrenelli E., Negrini F., Negrini S. Systematic Rapid “living” Review on Rehabilitation Needs Due to COVID-19: Update to March 31st, 2020. Eur J Phys Rehabil Med. 2020;56(3):347–353. doi: 10.23736/S1973-9087.20.06329-7.
89. Greenhalgh T., Knight M., A’Court C., Buxton B., Husain L. Management of Post-Acute Covid-19 in Primary Care. BMJ. 2020;370:m3026–m3026. doi: 10.1136/bmj.m3026.
90. Barker-Davies R.M., O’Sullivan O., Senaratne K.P.P., Baker P., Cranley M., Dharm-Datta S. et al. The Stanford Hall Consensus Statement for Post COVID-19 Rehabilitation. Br J Sports Med. 2020;54(16):949–959. doi: 10.1136/bjsports-2020-102596.
91. Carfì A., Bernabei R., Landi F. Persistent Symptoms in Patients after Acute COVID-19. JAMA. 2020;324(6):603–605. doi: 10.1001/jama.2020.12603.
92. Garrigues E., Janvier P., Kherabi Y., Le Bot A., Hamon A., Gouze H. et al. Post-Discharge Persistent Symptoms and Health-Related Quality of Life after Hospitalization for COVID-19. J Infect. (In Russ.) 2020;81(6):e4–e6. doi: 10.1016/j.jinf.2020.08.029.
93. Pizova N.V., Pizov A.V. Depression and Post-traumatic Stress Disorder in Patients with COVID-19. Lechebnoe delo = Medicine Business. 2020;(1):82–88. doi: 10.24411/2071-5315-2020-12197.
Review
For citations:
Pizova NV, Pizov NA, Pizov AV. Cognitive impairment in COVID-19 survivors. Meditsinskiy sovet = Medical Council. 2021;(4):69-77. (In Russ.) https://doi.org/10.21518/2079-701X-2021-4-69-77