Preview

Медицинский Совет

Расширенный поиск

Современные подходы к коррекции микробиоты кишечника

https://doi.org/10.21518/2079-701X-2021-4-136-143

Полный текст:

Аннотация

В статье представлены современные данные о формировании, структуре, функциях и возможностях коррекции кишечной микробиоты. Кишечная микробиота является совокупностью живых организмов, населяющих кишечник человека и формирующих сложную микроэкологическую систему, выполняющую множество функций. Известно, что на состав и состояние кишечной микробиоты оказывают влияние факторы окружающей среды, такие как диета и образ жизни, а также особенности организма человека, включая генетическую предрасположенность. Нарушение в данной системе (дисбиоз) может спровоцировать развитие ряда заболеваний и патологических состояний, при которых коррекция кишечной микробиоты может оказаться перспективной терапевтической стратегией. Наиболее распространенными методами коррекции дисбиоза являются соблюдение диеты, применение про- и пребиотиков и трансплантация фекальной микробиоты. Диета оказывает влияние на качественно-количественный состав и функции кишечной микробиоты, активность отдельных ее представителей. Пробиотики используются для модуляции, сохранения кишечной микробиоты при дисбиозе, а также для профилактики его развития. Трансплантация фекальной микробиоты осуществляется путем переноса микробиоты от здорового донора. Данный метод является одним из эффективных способов лечения инфекции Clostridium difficile. В данной обзорной статье также представлены результаты применения трансплантации фекальной микробиоты у пациентов с воспалительными заболеваниями кишечника и печеночной энцефалопатией. Показано, что после трансплантации наблюдается быстрое изменение состава кишечной микробиоты, которая становится сходной с микробиотой здорового донора. Каждый из перечисленных способов коррекции демонстрирует различную степень влияния на кишечную микробиоту, а их терапевтическая эффективность зависит от непосредственных характеристик используемых методик, а также конкретного заболевания и требует дальнейшего изучения.

Об авторах

Н. В. Стуров
Российский университет дружбы народов
Россия

Стуров Николай Владимирович, кандидат медицинских наук, доцент, заведующий кафедрой общей врачебной практики, заместитель директора по учебной работе Медицинского института

117198, Москва, ул. Миклухо-Маклая, д. 6



С. В. Попов
Российский университет дружбы народов
Россия

Попов Сергей Витальевич, доктор медицинских наук, профессор кафедры общей врачебной практики Медицинского института

117198, Москва, ул. Миклухо-Маклая, д. 6



В. А. Жуков
Российский университет дружбы народов
Россия

Жуков Владимир Андреевич, аспирант кафедры общей врачебной практики Медицинского института

117198, Москва, ул. Миклухо-Маклая, д. 6



Список литературы

1. Никонов Е.Л., Попова Е.Н. (ред.). Микробиота. М.: Медиа Сфера; 2019. 255 с. Режим доступа: https://endoexpert.ru/stati/monografiya_mikrobiota_pod_redaktsiey_e_l_nikonova_i_e_n_popovoy_2019/.

2. Sender R., Fuchs S., Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biology. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533.3.

3. Tanaka M., Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int. 2017;66(4):515–522. doi: 10.1016/j.alit.2017.07.010.

4. Dunn A.B., Jordan S., Baker B.J., Carlson N.S. The Maternal Infant Microbiome: Considerations for Labor and Birth. MCN Am J Matern Child Nurs. 2017;42(6):318–325. doi: 10.1097/NMC.0000000000000373.

5. Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P. et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17(6):852. doi: 10.1016/j.chom.2015.04.004.

6. Matsuki T., Yahagi K., Mori H., Matsumoto H., Hara T., Tajima S. et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun. 2016;7:11939. doi: 10.1038/ncomms11939.

7. Nuriel-Ohayon M., Neuman H., Koren O. Microbial Changes during Pregnancy, Birth, and Infancy. Front Microbiol. 2016;7:1031. doi: 10.3389/fmicb.2016.01031.

8. Gensollen T., Iyer S.S., Kasper D.L., Blumberg R.S. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–544. doi: 10.1126/science.aad9378.

9. Thursby E., Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836. doi: 10.1042/BCJ20160510.

10. Adair K.L., Douglas A.E. Making a microbiome: the many determinants of host-associated microbial community composition. Curr Opin Microbiol. 2017;35:23–29. doi: 10.1016/j.mib.2016.11.002.

11. Hall A.B., Tolonen A.C., Xavier R.J. Human genetic variation and the gut microbiome in disease. Nat Rev Genet. 2017;18(11):690–699. doi: 10.1038/nrg.2017.63.

12. Abdul-Aziz M.A., Cooper A., Weyrich L.S. Exploring Relationships between Host Genome and Microbiome: New Insights from Genome-Wide Association Studies. Front Microbiol. 2016;7:1611. doi: 10.3389/fmicb.2016.01611.

13. Harmsen H.J. M., de Goffau M.C. The Human Gut Microbiota. Adv Exp Med Biol. 2016;902:95–108. doi: 10.1007/978-3-319-31248-4_7.

14. Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Reddy D.N. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803. doi: 10.3748/wjg.v21.i29.8787.

15. Lloyd-Price J., Abu-Ali G., Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51. doi: 10.1186/s13073-016-0307-y.

16. Shafquat A., Joice R., Simmons S.L., Huttenhower C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 2014;22(5):261–266. doi: 10.1016/j.tim.2014.01.011.

17. Nagai M., Obata Y., Takahashi D., Hase K. Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabolite axis. Int Immunopharmacol. 2016;37:79–86. doi: 10.1016/j.intimp.2016.04.001.

18. Flint H.J., Duncan S.H., Scott K.P., Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015;74(1):13–22. doi: 10.1017/S0029665114001463.

19. Meng X., Zhang G., Cao H., Yu D., Fang X., Vos W.M., Wu H. Gut dysbacteriosis and intestinal disease: mechanism and treatment. J Appl Microbiol. 2020;129(4):787–805. doi: 10.1111/jam.14661.

20. Gagliardi A., Totino V., Cacciotti F., Iebba V., Neroni B., Bonfiglio G. et al. Rebuilding the Gut Microbiota Ecosystem. Int J Environ Res Public Health. 2018;15(8):1679. doi: 10.3390/ijerph15081679.

21. Bäumler A.J., Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535(7610):85–93. doi: 10.1038/nature18849.

22. Amabebe E., Robert F.O., Agbalalah T., Orubu E.S. F. Microbial dysbiosisinduced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr. 2020;123(10):1127–1137. doi: 10.1017/S0007114520000380.

23. Kwak M.J., Kwon S.K., Yoon J.K., Song J.Y., Seo J.G., Chung M.J., Kim JF. Evolutionary architecture of the infant-adapted group of Bifidobacterium species associated with the probiotic function. Syst Appl Microbiol. 2016;39(7):429–439. doi: 10.1016/j.syapm.2016.07.004.

24. Shang M., Sun J. Vitamin D/VDR, probiotics, and gastrointestinal diseases. Curr Med Chem. 2017;24(9):876–887. doi: 10.2174/0929867323666161202150008.

25. Yamamoto E.A., Jørgensen T.N. Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity. Front Immunol. 2020;10:3141. doi: 10.3389/fimmu.2019.03141.

26. Celiberto L.S., Bedani R., Rossi E.A., Cavallini D.C. U. Probiotics: The scientific evidence in the context of inflammatory bowel disease. Crit Rev Food Sci Nutr. 2017;57(9):1759–1768. doi: 10.1080/10408398.2014.941457.

27. Tidjani Alou M., Lagier J.-C., Raoult D. Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Hum Microbiome J. 2016;1:3–11. doi: 10.1016/j.humic.2016.09.001.

28. Magruder M., Sholi A.N., Gong C., Zhang L., Edusei E., Huang J. et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat Commun. 2019;10(1):5521. doi: 10.1038/s41467-019-13467-w.

29. Forbes J.D., Van Domselaar G., Bernstein C.N. The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front Microbiol. 2016;7:1081. doi: 10.3389/fmicb.2016.01081.

30. Simpson H.L., Campbell B.J. Review article: dietary fibre – microbiota interactions. Aliment Pharmacol Ther. 2015;42(2):158–179. doi: 10.1111/apt.13248.

31. Filippis F.D., Pellegrini N., Vannini L., Jeffery I.B., Storia A.L., Laghi L. et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–1821. doi: 10.1136/gutjnl-2015-309957.

32. Sakkas H., Bozidis P., Touzios C., Kolios D., Athanasiou G., Athanasopoulou E. et al. Nutritional Status and the Influence of the Vegan Diet on the Gut Microbiota and Human Health. Medicina (Kaunas). 2020;56(2):88. doi: 10.3390/medicina56020088.

33. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi: 10.1038/nature12820.

34. Murphy E.A., Velazquez K.T., Herbert K.M. Influence of High-Fat-Diet on Gut Microbiota: A Driving Force for Chronic Disease Risk. Curr Opin Clin Nutr Metab Care. 2015;18(5):515–520. doi: 10.1097/MCO.0000000000000209.

35. Smith-Brown P., Morrison M., Krause L., Davies P.S. W. Dairy and plant based food intakes are associated with altered faecal microbiota in 2 to 3 year old Australian children. Sci Rep. 2016;6:32385. doi: 10.1038/srep32385.

36. Arrieta M.-C., Stiemsma L.T., Dimitriu P.A., Thorson L., Russell S., YuristDoutsch S. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152. doi: 10.1126/scitranslmed.aab2271.

37. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–514. doi: 10.1038/nrgastro.2014.66.

38. Sebastián Domingo J.J. Review of the role of probiotics in gastrointestinal diseases in adults. Gastroenterol Hepatol. 2017;40(6):417–429. doi: 10.1016/j.gastrohep.2016.12.003.

39. Daliri E., Lee B.H. New perspectives on probiotics in health and disease. Food Sci Hum Wellness. 2015;4(2):56–65. doi: 10.1016/j.fshw.2015.06.002.

40. Guarner F., Sanders M.E., Eliakim R., Fedorak R., Gangl A., Garisch J. et al. Probiotics and prebiotics. World Gastroenterology Organisation. 2017. Available at: https://www.worldgastroenterology.org/guidelines/globalguidelines/probiotics-and-prebiotics/probiotics-and-prebiotics-english.

41. Ouwehand A.C., Forssten S., Hibberd A.A., Lyra A., Stahl B. Probiotic approach to prevent antibiotic resistance. Ann Med. 2016;48(4):246–255. doi: 10.3109/07853890.2016.1161232.

42. Korpela K., Salonen A., Virta L.J., Kumpu M., Kekkonen R.A., de Vos W.M. Lactobacillus rhamnosus GG Intake Modifies Preschool Children’s Intestinal Microbiota, Alleviates Penicillin-Associated Changes, and Reduces Antibiotic Use. PLoS One. 2016;11(4):e0154012. doi: 10.1371/journal.pone.0154012.

43. Ivashkin V.T., Mayev I.V., Abdulganieva D.I., Alekseenko S.A., Ivashkina N.Yu., Korochanskaya N.V. et al. Practical Recommendations of Scientific Society for the Study of Human Microbiome and Russian Gastroenterological Association (RGA) for Probiotics in Treatment and Prevention of Gastroenterological Diseases in Adults. Rossiyskiy zhurnal gastroehnterologii, gepatologii, koloproktologii = Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(2):76–89. (In Russ.) doi: 10.22416/1382-4376-2020-30-2-76-89.

44. Yoo J.Y., Kim S.S. Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders. Nutrients. 2016;8(3):173. doi: 10.3390/nu8030173.

45. Sun J., Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. Ann Med. 2015;47(6):430–440. doi: 10.3109/07853890.20 15.1071872.

46. Kim C.J., Walmsley S.L., Raboud J.M., Kovacs C., Coburn B., Rousseau R. et al. Can Probiotics Reduce Inflammation and Enhance Gut Immune Health in People Living with HIV: Study Designs for the Probiotic Visbiome for Inflammation and Translocation (PROOV IT) Pilot Trials. HIV Clin Trials. 2016;17(4):147–157. doi: 10.1080/15284336.2016.1184827.

47. Cani P.D., Van Hul M. Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr Opin Biotechnol. 2015;32:21–27. doi: 10.1016/j.copbio.2014.10.006.

48. Patel R., DuPont H.L. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin Infect Dis. 2015;60(2 Suppl.):108–121. doi: 10.1093/cid/civ177.

49. Martín R., Miquel S., Benevides L., Bridonneau C., Robert V., Hudault S. et al. Functional Characterization of Novel Faecalibacterium prausnitzii Strains Isolated from Healthy Volunteers: A Step Forward in the Use of F. prausnitzii as a Next-Generation Probiotic. Front Microbiol. 2017;8:1226. doi: 10.3389/fmicb.2017.01226.

50. Cani P.D., Everard A. Akkermansia muciniphila: a novel target controlling obesity, type 2 diabetes and inflammation? Med Sci (Paris). 2014;30(2):125–127. (In French) doi: 10.1051/medsci/20143002003.

51. Schneeberger M., Everard A., Gómez-Valadés A.G., Matamoros S., Ramírez S., Delzenne N.M. et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643. doi: 10.1038/srep16643.

52. Miller L.E., Ouwehand A.C., Ibarra A. Effects of probiotic-containing products on stool frequency and intestinal transit in constipated adults: systematic review and meta-analysis of randomized controlled trials. Ann Gastroenterol. 2017;30(6):629–639. doi: 10.20524/aog.2017.0192.

53. Asha M.Z., Khalil S.F. H. Efficacy and Safety of Probiotics, Prebiotics and Synbiotics in the Treatment of Irritable Bowel Syndrome. Sultan Qaboos Univ Med J. 2020;20(1):e13–24. doi: 10.18295/squmj.2020.20.01.003.

54. Derwa Y., Gracie D.J., Hamlin P.J., Ford A.C. Systematic review with metaanalysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther. 2017;46(4):389–400. doi: 10.1111/apt.14203.

55. Ganji‐Arjenaki M., Rafieian‐Kopaei M. Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review. J Cell Physiol. 2018;233(3):2091–2103. doi: 10.1002/jcp.25911.

56. Oka A., Sartor R.B. Microbial-Based and Microbial-Targeted Therapies for Inflammatory Bowel Diseases. Dig Dis Sci. 2020;65(3):757–788. doi: 10.1007/s10620-020-06090-z.

57. Luthold R.V., Fernandes G.R., Franco-de-Moraes A.C., Folchetti L.G. D., Ferreira S.R. G. Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. Metabolism. 2017;69:76–86. doi: 10.1016/j.metabol.2017.01.007.

58. Yacoub R., Kaji D., Patel S.N., Simoes P.K., Busayavalasa D., Nadkarni G.N. et al. Association between probiotic and yogurt consumption and kidney disease: insights from NHANES. Nutr J. 2016;15:10. doi: 10.1186/s12937-016-0127-3.

59. Firouzi S., Haghighatdoost F. The effects of prebiotic, probiotic, and synbiotic supplementation on blood parameters of renal function: A systematic review and meta-analysis of clinical trials. Nutrition. 2018;51–52:104–113. doi: 10.1016/j.nut.2018.01.007.

60. Hadi A., Mohammadi H., Miraghajani M., Ghaedi E. Efficacy of synbiotic supplementation in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis of clinical trials: Synbiotic supplementation and NAFLD. Crit Rev Food Sci Nutr. 2019;59(15):2494–2505. doi: 10.1080/10408398.2018.1458021.

61. Kristensen N.B., Bryrup T., Allin K.H., Nielsen T., Hansen T.H., Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8(1):52. doi: 10.1186/s13073-016-0300-5.

62. Satokari R. Modulation of Gut Microbiota for Health by Current and NextGeneration Probiotics. Nutrients. 2019;11(8):1921. doi: 10.3390/nu11081921.

63. Sanders M.E. Probiotics and microbiota composition. BMC Med. 2016;14(1):82. doi: 10.1186/s12916-016-0629-z.

64. Falony G., Joossens M., Vieira-Silva S., Wang J., Darzi Y., Faust K. et al. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560–564. doi: 10.1126/science.aad3503.

65. Mullish B.H., Quraishi M.N., Segal J.P., McCune V. L., Baxter M., Marsden G.L. et al. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut. 2018;67(11):1920–1941. doi: 10.1136/gutjnl-2018-316818.

66. Saha S., Mara K., Pardi D.S., Khanna S. Long-term Safety of Fecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection. Gastroenterology. 2021;(April 08). (In press) doi: 10.1053/j.gastro.2021.01.010.

67. Grehan M.J., Borody T.J., Leis S.M., Campbell J., Mitchell H., Wettstein A. Durable alteration of the colonic microbiota by the administration of donor fecal flora. J Clin Gastroenterol. 2010;44(8):551–561. doi: 10.1097/MCG.0b013e3181e5d06b.

68. Blanchaert C., Strubbe B., Peeters H. Fecal microbiota transplantation in ulcerative colitis. Acta Gastroenterol Belg. 2019;82(4):519–528. Available at: https://pubmed.ncbi.nlm.nih.gov/31950808/.

69. Sokol H., Landman C., Seksik P., Berard L., Montil M., Nion-Larmurier I. et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome. 2020;8(1):12. doi: 10.1186/s40168-020-0792-5.

70. Caldeira L.F., Borba H.H., Tonin F.S., Wiens A., Fernandez-Llimos F., Pontarolo R. Fecal microbiota transplantation in inflammatory bowel disease patients: A systematic review and meta-analysis. PLoS One. 2020;15(19):e0238910. doi: 10.1371/journal.pone.0238910.

71. El-Salhy M., Mazzawi T. Fecal microbiota transplantation for managing irritable bowel syndrome. Expert Rev Gastroenterol Hepatol. 2018;12(5):439–445. doi: 10.1080/17474124.2018.1447380.

72. Xu D., Chen V.L., Steiner C.A., Berinstein J.A., Eswaran S., Waljee A.K. et al. Efficacy of Fecal Microbiota Transplantation in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Am J Gastroenterol. 2019;114(7):1043–1050. doi: 10.14309/ajg.0000000000000198.

73. Ianiro G., Eusebi L.H., Black C.J., Gasbarrini A., Cammarota G., Ford A.C. Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. Aliment Pharmacol Ther. 2019;50(3):240–248. doi: 10.1111/apt.15330.

74. Myneedu K., Deoker A., Schmulson M.J., Bashashati M. Fecal microbiota transplantation in irritable bowel syndrome: A systematic review and meta-analysis. United European Gastroenterol J. 2019;7(8):1033–1041. doi: 10.1177/2050640619866990.

75. Kao D., Roach B., Park H., Hotte N., Madsen K., Bain V., Tandon P. Fecal microbiota transplantation in the management of hepatic encephalopathy. Hepatology. 2016;63(1):339–340. doi: 10.1002/hep.28121.

76. Bajaj J.S., Kassam Z., Fagan A., Gavis E.A., Liu E., Cox I.J. et al. Fecal Microbiota Transplant from a Rational Stool Donor Improves Hepatic Encephalopathy: A Randomized Clinical Trial. Hepatology. 2017;66(6):1727–1738. doi: 10.1002/hep.29306.

77. Bajaj J.S., Salzman N.H., Acharya C., Sterling R.K., White M.B., Gavis E.A. et al. Fecal Microbial Transplant Capsules are Safe in Hepatic Encephalopathy: A Phase 1, Randomized, Placebo-Controlled Trial. Hepatology. 2019;70(5):1690–1703. doi: 10.1002/hep.30690.

78. Vemuri R., Shankar E.M., Chieppa M., Eri R., Kavanagh K. Beyond Just Bacteria: Functional Biomes in the Gut Ecosystem Including Virome, Mycobiome, Archaeome and Helminths. Microorganisms. 2020;8(4):483. doi: 10.3390/microorganisms8040483.

79. DeFilipp Z., Bloom P.P., Soto M.T., Mansour M.K., Sater M.R. A., Huntley M. H et al. Drug-Resistant E. coli Bacteremia Transmitted by Fecal Microbiota Transplant. N Engl J Med. 2019;381(21):2043–2050. doi: 10.1056/NEJMoa1910437.

80. Cammarota G., Ianiro G., Tilg H., Rajilić-Stojanović M., Kump P., Satokari R. et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66(4):569–580. doi: 10.1136/gutjnl-2016–313017.


Для цитирования:


Стуров Н.В., Попов С.В., Жуков В.А. Современные подходы к коррекции микробиоты кишечника. Медицинский Совет. 2021;(4):136-143. https://doi.org/10.21518/2079-701X-2021-4-136-143

For citation:


Sturov N.V., Popov S.V., Zhukov V.A. Modern approaches to the correction of the gut microbiota. Meditsinskiy sovet = Medical Council. 2021;(4):136-143. (In Russ.) https://doi.org/10.21518/2079-701X-2021-4-136-143

Просмотров: 89


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)