Preview

Meditsinskiy sovet = Medical Council

Advanced search

PPARγ gene expression analysis in psoriasis treatment

https://doi.org/10.21518/2079-701X-2021-8-82-87

Abstract

Introduction. PPARγ is the most studied PPAR subtype and is expressed predominantly in adipose tissue, heart, colon, kidney, spleen, intestine, skeletal muscle, liver, macrophages, and skin. In the skin, PPARγ controls the genetic regulation of gene network expression involved in cell proliferation, differentiation, and inflammatory responses. PPARγ (Peroxisome proliferator-activated receptor gamma) has only recently come to be considered a key player in the development and pathogenesis of psoriasis and psoriatic inflammatory conditions.
Aim of the study. To study PPARγ gene expression in the affected skin of psoriasis patients in comparison with visually unaffected skin. To study changes in PPARγ gene expression level in psoriasis affected skin in comparison with unaffected skin in patients before and after treatment with low-level laser radiation with a wavelength of 1.27 μm.
Materials and methods. Twelve patients with psoriasis participated in the study. Biopsies from unaffected skin areas were taken at a distance of about 3 cm from the affected skin. Analysis was performed by real-time PCR.
Results and Discussion. We quantitatively measured PPARγ gene expression using RT-PCR in the affected skin of patients with psoriasis in comparison with visually unaffected skin in the same patients before and after treatment with low-level laser radiation with a wavelength of 1.27 μm (the short-wave part of the infrared range). The study experimentally showed a 1.3 ± 0.27-fold decrease in PPARγ gene expression in the affected skin of psoriasis patients on average. Significant increase in over-expression of PPARγ gene up to 2,13 ± 0,47 times was observed after treatment of patients with low-level laser radiation.
Conclusions. PPARγ gene expression may be an indicator of the efficacy of psoriasis treatment at the molecular level, as well as become a new therapeutic target.

About the Authors

V. V. Sobolev
Mechnikov Scientific and Research Institute of Vaccines and Sera; Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences
Russian Federation

Vladimir V. Sobolev, Cand. Sci. (Bio.), Senior Researcher; Senior Researcher

5a, Malyy Kazenny Lane, Moscow, 105064

30, Srednyaya Kalitnikovskaya St., Moscow 109029

 



A. G. Soboleva
Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences; Research Institute of Human Morphology
Russian Federation

Anna G. Soboleva, Cand. Sci. (Bio.), Senior Researcher; Researcher

30, Srednyaya Kalitnikovskaya St., Moscow 109029

3, Tsurupa St., Moscow, 117418



N. N. Potekaev
Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology; Pirogov Russian National Research Medical University
Russian Federation

Nikolay N. Potekaev, Dr. Sci. (Med.), Professor, Director; Head of Department of Skin Diseases and Cosmetology

17, Leninskiy Ave., Moscow, 119071

1, Ostrovityanov St., Moscow, 117997



O. O. Melnichenko
Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology
Russian Federation

Olga O. Melnichenko, Cand. Sci. (Med.), Dermatovenerologist

17, Leninskiy Ave., Moscow, 119071



I. M. Korsunskaya
Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences
Russian Federation

Irina M. Korsunskaya, Dr. Sci. (Med.), Professor, Head of the Laboratory

30, Srednyaya Kalitnikovskaya St., Moscow 109029



S. I. Artemyeva
Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology
Russian Federation

Sofya I. Artemyeva, Junior Researcher, Dermatologist

17, Leninskiy Ave., Moscow, 119071



References

1. Schmuth M., Moosbrugger-Martinz V., Blunder S., Dubrac S. Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. Biochim Biophys Acta. 2014;1841(3):463–473. doi: 10.1016/j.bbalip.2013.11.012.

2. Sher T., Yi H.F., McBride O.W., Gonzalez F.J. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry. 1993;32:5598–5604. doi: 10.1021/bi00072a015.

3. Sertznig P., Reichrath J. Peroxisome proliferator-activated receptors (PPARs) in dermatology: Challenge and promise. Dermatoendocrinol. 2011;3(3): 130–135. Available at: https://pubmed.ncbi.nlm.nih.gov/22110772/.

4. Kliewer S.A., Umesono K., Noonan D.J., Heyman R.A., Evans R.M. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature. 1992;358:771–774. doi: 10.1038/358771a0.

5. Ricote M., Glass C.K. PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta. 2007;1771(8):926–935. doi: 10.1016/j.bbalip.2007.02.013.

6. Jiang C., Ting A.T., Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391:82–86. doi: 10.1038/34184.

7. Yessoufou A., Wahli W. Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med Wkly. 2010;140:w13071. doi: 10.4414/smw.2010.13071.

8. Nehrenheim K., Meyer I., Brenden H., Vielhaber G. Krutmann J., Grether-Becket S. Dihydrodehydrodiisoeugenol enhances adipocyte differentiation and decreases lipolysis in murine and human cells. Exp Dermatol. 2013;22(10):638–643. doi: 10.1111/exd.12218.

9. Adachi Y., Hatano Y., Sakai T., Fujiwara S. Expressions of peroxisome proliferator-activated receptors (PPARs) are directly influenced by permeability barrier abrogation and inflammatory cytokines and depressed PPARα modulates expressions of chemokines and epidermal differentiation-related molecules in keratinocytes. Exp Dermatol. 2013;22(9):606–608. doi: 10.1111/exd.12208.

10. Henson P. Suppression of macrophage inflammatory responses by PPARs. Proc Natl Acad Sci U S A. 2003;100(11):6295–6296. doi: 10.1073/pnas.1232410100.

11. Marx N., Kehrle B., Kohlhammer K., Grüb M., Koenig W., Hombach V. et al PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res. 2002;90(6):703–710. doi: 10.1161/01.RES.0000014225.20727.8F.

12. Demerjian M., Man M.-Q., Choi E.-H., Brown B.E., Crumrine D., Chang S. et al. Topical treatment with thiazolidinediones, activators of peroxisome proliferator-activated receptor-gamma, normalizes epidermal homeostasis in a murine hyperproliferative disease model. Exp Dermatol. 2006;15(3):154–160. doi: 10.1111/j.1600-0625.2006.00402.x.

13. Sobolev V., Nesterova A., Soboleva A., Dvoriankova E., Piruzyan A., Mildzikhova D. et al. The Model of PPARγ-Downregulated Signaling in Psoriasis. PPAR Res. 2020;2020:6529057. doi: 10.1155/2020/6529057.

14. Nesterova A.P., Klimov E.A., Zharkova M., Sozin S., Sobolev V.V., Ivannikova N.V. et al. Disease Pathways: An Atlas of Human Disease Signaling Pathways. Elsevier; 2019. doi: 10.1016/C2018-0-00586-1.

15. Sobolev V.V., Denisova E.V., Korsunskaya I.M. Alteration of STAT3 gene expression in psoriasis treatment. Meditsinskiy sovet = Medical Council. 2020;(12):71–74. (In Russ.) doi: 10.21518/2079-701X-2020-12-71-74.

16. Nevozinskaya Z.A., Soboleva A.G., Klimov E.A., Korsunskaya I.M., Sobolev V.V. Study of expression of mmp-1 gene in localized solerodermia. Molekulyarnaya meditsina = Molecular Medicine. 2019;17(2):31–38. (In Russ.) doi: 10.29296/24999490-2019-02-04.

17. Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262.

18. Yao Y., Richman L., Morehouse C., de los Reyes M., Higgs B.W., Boutrin A. et al. Type I interferon: potential therapeutic target for psoriasis? PLoS One. 2008;3(7):e2737. doi: 10.1371/journal.pone.0002737.

19. Westergaard M., Henningsen J., Johansen C., Rasmussen S., Svendsen M.L., Jensen U.B. et al. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin. J Invest Dermatol. 2003;121(5):1104–1117. doi: 10.1046/j.1523-1747.2003.12536.x.

20. Tang T., Zhang J., Yin J., Staszkiewicz J., Gawronska-Kozak B., Jung D.Y. et al. Uncoupling of Inflammation and Insulin Resistance by NF-κB in Transgenic Mice through Elevated Energy Expenditure. J Biol Chem. 2010;285(7):4637–4644. doi: 10.1074/jbc.M109.068007.

21. Xu X., He M., Liu T., Zeng Y., Zhang W. Effect of Salusin-β on Peroxisome Proliferator-Activated Receptor Gamma Gene Expression in Vascular Smooth Muscle Cells and its Possible Mechanism. Cell Physiol Biochem. 2015;36(6):2466–2479. doi: 10.1159/000430207.

22. Sobolev V.V., Zolotorenko A.D., Soboleva A.G., Elkin A.M., Il’ina S.A., Serov D.N. et al. Effects of Expression of Transcriptional Factor AP-1 FOSL1 Gene on Psoriatic Process. Bull Exp Biol Med. 2011;150:632–634. doi: 10.1007/s10517-011-1208-0.

23. Sobolev V.V., Zolotarenko A.D., Soboleva A.G., Sautin M.E., Il’ina S.A., Sarkisova M.K. et al. Expression of the FOSL1 gene in psoriasis and ather-osclerosis. Genetika. 2010;46(1):104–110. (In Russ.) Available at: https://pubmed.ncbi.nlm.nih.gov/20198886.

24. Srivastava A., Nikamo P., Lohcharoenkal W., Li D., Meisgen F., Xu Landén N. et al. MicroRNA-146a suppresses IL-17-mediated skin inflammation and is genetically associated with psoriasis. J Allergy Clin Immunol. 2017;139(2): 550–561. doi: 10.1016/j.jaci.2016.07.025.

25. Chowdhari S., Saini N. hsa-miR-4516 mediated downregulation of STAT3/CDK6/UBE2N plays a role in PUVA induced apoptosis in keratinocytes. J Cell Physiol. 2014;229(11):1630–1638. doi: 10.1002/jcp.24608.

26. Bovenschen H.J., van de Kerkhof P.C., van Erp P.E., Woestenenk R., Joosten I., Koenen H.J. Foxp3+ Regulatory T Cells of Psoriasis Patients Easily Differentiate into IL-17A-Producing Cells and Are Found in Lesional Skin. J Invest Dermatol. 2011;131(9):1853–1860. doi: 10.1038/jid.2011.139.

27. Shu Y., Hu Q., Long H., Chang C., Lu Q., Xiao R. Epigenetic Variability of CD4+CD25+Tregs Contributes to the Pathogenesis of Autoimmune Diseases. Clin Rev Allergy Immunol. 2017;52(2):260–272. doi: 10.1007/s12016-016-8590-3.


Review

For citations:


Sobolev VV, Soboleva AG, Potekaev NN, Melnichenko OO, Korsunskaya IM, Artemyeva SI. PPARγ gene expression analysis in psoriasis treatment. Meditsinskiy sovet = Medical Council. 2021;(8):82-87. (In Russ.) https://doi.org/10.21518/2079-701X-2021-8-82-87

Views: 809


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)