Preview

Meditsinskiy sovet = Medical Council

Advanced search

Biomarkers in metastatic melanoma of the skin: can we more accurately choose the tactics of treating our patients?

https://doi.org/10.21518/2079-701X-2021-9-48-63

Abstract

With an increasing number of alternative effective therapies available for patients, there is an increasing need for a more accurate selection for therapy (compared to observation, for example, after radical surgical treatment), selection of the optimal therapy (prediction of primary resistance or, conversely, high sensitivity), and criteria for stopping treatment (complete tumor elimination) or changing therapy (molecular, i.e. preclinical and preradiological progression). We look for answers to all these questions in a variety of biomarkers. Many clinical markers (e.g. ECOG performance status or disease prevalence), molecular genetic (e.g. such as mutations in the BRAF gene, NRAS, NF1, TMB), immunological (e.g. tumor infiltration by lymphocytes and expression of PDl1, PDl2, PD1 or other «immune checkpoints» on tumor cells and microenvironmental cells), as well as factors circulating in the blood and plasma (e.g., blood cell-to-cell ratio, circulating tumor DNA or cytokines in the peripheral blood). In this study, we have tried to analyze the data accumulated so far and attempt to relate them both to current clinical practice and available therapies, as well as to outline the prospects for upcoming research in this area. In our opinion, the available data may influence the current routine practice of oncologists and allow for a more careful choice of first-line therapy to maximize benefit and minimize harm. Although it is likely that some organizational effort will be needed to change established clinical practice in order to identify such biomarkers.

About the Authors

A. R. Zaretsky
Pirogov Russian National Research Medical University
Russian Federation

Andrew R. Zaretsky, Researcher, Department of Molecular Technologies, Research Institute of Translational Medicine

1, Ostrovityanov St., Moscow, 117997

Scopus Author ID: 57130636900;

Author ID: 882141



L. V. Demidov
Blokhin National Medical Research Center of Oncology
Russian Federation

Lev V. Demidov, Dr. Sci. (Med.), Professor, Head of the Department of Oncodermatology

23, Kashirskoye Shosse, Moscow, 115478

Scopus Author ID: 6602828686;

Author ID: 173317



I. V. Samoylenko
Blokhin National Medical Research Center of Oncology
Russian Federation

Igor V. Samoylenko, Cand. Sci. (Med.), Senior Researcher, Department of Oncodermatology

23, Kashirskoye Shosse, Moscow, 115478

Scopus Author ID: 57206666589;

Author ID: 520864;

WoS Researcher ID: AAQ-2321-2020



References

1. Hodi F.S., O’Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B. et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N Engl J Med. 2010;363(8):711–723. https://doi.org/10.1056/NEJMoa1003466.

2. Tarhini A., Kudchadkar R.R. Predictive and On-Treatment Monitoring Biomarkers in Advanced Melanoma: Moving toward Personalized Medicine. Cancer Treat Rev. 2018;71:8–18. https://doi.org/10.1016/j.ctrv.2018.09.005.

3. Bastian B., de la Fouchardiere A., Elder D., Gerami P., Lazar A., Massi D. et al. Genomic Landscapes of Melanoma. In: Elder D., Massi D., Scolyer R., Willemze R. (eds.). World Health Organisation classification of skin tumours. 4th ed. Lion, France International Agency for Research on Cancer; 2018, pp. 72–75.

4. Flaherty K.T., Lee S.J., Zhao F., Schuchter L.M., Flaherty L., Kefford R. et al. Phase III Trial of Carboplatin and Paclitaxel with or without Sorafenib in Metastatic Melanoma. J Clin Oncol. 2013;31(3):373–379. https://doi.org/10.1200/JCO.2012.42.1529.

5. Hauschild A., Agarwala S.S., Trefzer U., Hogg D., Robert C., Hersey P. et al. Results of a Phase III, Randomized, Placebo-Controlled Study of Sorafenib in Combination with Carboplatin and Paclitaxel as Second-Line Treatment in Patients with Unresectable Stage III or Stage IV Melanoma. J Clin Oncol. 2009;27(17):2823–2830. https://doi.org/10.1200/JCO.2007.15.7636.

6. Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S. et al. Mutations of the BRAF Gene in Human Cancer. Nature. 2002;417(6892):949–954. https://doi.org/10.1038/nature00766.

7. Menzies A.M., Haydu L.E., Visintin L., Carlino M.S., Howle J.R., Thompson J.F. et al. Distinguishing Clinicopathologic Features of Patients with V600E and V600K BRAF-Mutant Metastatic Melanoma. Clin Cancer Res. 2012;18(12):3242–3249. https://doi.org/10.1158/1078-0432.CCR-12-0052.

8. Nazarian R., Shi H., Wang Q., Kong X., Koya R.C., Lee H. et al. Melanomas Acquire Resistance to B-RAF(V600E) Inhibition by RTK or N-RAS Upregulation. Nature. 2010;468(7326):973–977. https://doi.org/10.1038/nature09626.

9. Ascierto P.A., McArthur G.A., Dréno B., Atkinson V., Liszkay G., Di Giacomo A.M. et al. Cobimetinib Combined with Vemurafenib in Advanced BRAF(V600)- Mutant Melanoma (coBRIM): Updated Efficacy Results from a Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2016;17(9):1248–1260. https://doi.org/10.1016/S1470-2045(16)30122-X.

10. Dummer R., Ascierto P.A., Gogas H.J., Arance A., Mandala M., Liszkay G. et al. Overall Survival in Patients with BRAF-Mutant Melanoma Receiving Encorafenib plus Binimetinib versus Vemurafenib or Encorafenib (COLUMBUS): A Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2018;19(10):1315–1327. https://doi.org/10.1016/S1470-2045(18)30497-2.

11. Robert C., Grob J.J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E. et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N Engl J Med. 2019;381(7):626–636. https://doi.org/10.1056/NEJMoa1904059.

12. Nti A.A., Serrano L.W., Sandhu H.S., Uyhazi K.E., Edelstein I.D., Zhou E.J. et al. Frequent Subclinical Macular Changes in Combined BRAF/MEK Inhibition with High-Dose Hydroxychloroquine as Treatment for Advanced Metastatic BRAF Mutant Melanoma: Preliminary Results From a Phase I/II Clinical Treatment Trial. Retina. 2019;39(3):502–513. https://doi.org/10.1097/IAE.0000000000002027.

13. Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Rutkowski P., Lao C.D. et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2019;381(16):1535–1546. https://doi.org/10.1056/NEJMoa1910836.

14. Dankner M., Lajoie M., Moldoveanu D., Nguyen T.T., Savage P., Rajkumar S. et al. Dual MAPK Inhibition Is an Effective Therapeutic Strategy for a Subset of Class II BRAF Mutant Melanomas. Clin Cancer Res. 2018;24(24):6483–6494. https://doi.org/10.1158/1078-0432.CCR-17-3384.

15. Menzer C., Menzies A.M., Carlino M.S., Reijers I., Groen E.J., Eigentler T. et al. Targeted Therapy in Advanced Melanoma With Rare BRAF Mutations. J Clin Oncol. 2019;37(33):3142–3151. https://doi.org/10.1200/JCO.19.00489.

16. Moiseyenko F.V., Egorenkov V.V., Kramchaninov M.M., Artemieva E.V., Aleksakhina S.N., Holmatov M.M. et al. Lack of Response to Vemurafenib in Melanoma Carrying BRAF K601E Mutation. Case Rep Oncol. 2019;12(2):339–343. https://doi.org/10.1159/000500481.

17. Jakob J.A., Bassett R.L. Jr, Ng C.S., Curry J.L., Joseph R.W., Alvarado G.C. et al. NRAS Mutation Status Is an Independent Prognostic Factor in Metastatic Melanoma. Cancer. 2012;118(16):4014–4023. https://doi.org/10.1002/cncr.26724.

18. Thomas N.E., Edmiston S.N., Alexander A., Groben P.A., Parrish E., Kricker A. et al. Association between NRAS and BRAF Mutational Status and Melanoma-Specific Survival among Patients with Higher-Risk Primary Melanoma. JAMA Oncol. 2015;1(3):359–368. https://doi.org/10.1001/jamaoncol.2015.0493.

19. Dummer R., Schadendorf D., Ascierto P.A., Arance A., Dutriaux C., Di Giacomo A.M. et al. Binimetinib versus Dacarbazine in Patients with Advanced NRAS-Mutant Melanoma (NEMO): A Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2017;18(4):435–445. https://doi.org/10.1016/S1470-2045(17)30180-8.

20. Orlov S.V., Urtenova M.A., Sviridenko M.A., Nesterov D.V., Sokolova T.N., Imyanitov E.N. Rapid Improvement of the Performance Status and Reduction of the Tumor Size in KRAS-Mutated Colorectal Cancer Patient Receiving Binimetinib, Hydroxychloroquine, and Bevacizumab. Case Rep Oncol. 2020;13(2):985–989. https://doi.org/10.1159/000509241.

21. Xavier C.B., Marchetti K.R., Castria T.B., Jardim D.L.F., Fernandes G.S. Trametinib and Hydroxychloroquine (HCQ) Combination Treatment in KRAS-Mutated Advanced Pancreatic Adenocarcinoma: Detailed Description of Two Cases. J Gastrointest Cancer. 2021;52(1):374–380. https://doi.org/10.1007/s12029-020-00556-z.

22. Zhao H., Zheng B. Dual Targeting of Autophagy and MEK in KRAS Mutant Cancer. Trends Cancer. 2019;5(6):327–329. https://doi.org/10.1016/j.trecan.2019.04.003.

23. Kinsey C.G., Camolotto S.A., Boespflug A.M., Guillen K.P., Foth M., Truong A. et al. Protective Autophagy Elicited by RAF MEK ERK Inhibition Suggests a Treatment Strategy for RAS-Driven Cancers. Nat Med. 2019;25(4):620–627. https://doi.org/10.1038/s41591-019-0367-9.

24. Hodi F.S., Corless C.L., Giobbie-Hurder A., Fletcher J.A., Zhu M., MarinoEnriquez A. et al. Imatinib for Melanomas Harboring Mutationally Activated or Amplified KIT Arising on Mucosal, Acral, and Chronically SunDamaged Skin. J Clin Oncol. 2013;31(26):3182–3190. https://doi.org/10.1200/JCO.2012.47.7836.

25. Guo J., Carvajal R.D., Dummer R., Hauschild A., Daud A., Bastian B.C. et al. Efficacy and Safety of Nilotinib in Patients with KIT-Mutated Metastatic or Inoperable Melanoma: Final Results from the Global, Single-Arm, Phase II TEAM Trial. Ann Oncol. 2017;28(6):1380–1387. https://doi.org/10.1093/annonc/mdx079.

26. Kluger H.M., Dudek A.Z., McCann C., Ritacco J., Southard N., Jilaveanu L.B. et al. A Phase 2 Trial of Dasatinib in Advanced Melanoma. Cancer. 2011;117(10):2202–2208. https://doi.org/10.1002/cncr.25766.

27. Decoster L., Vande Broek I., Neyns B., Majois F., Baurain J.F., Rottey S. et al. Biomarker Analysis in a Phase II Study of Sunitinib in Patients with Advanced Melanoma. Anticancer Res. 2015;35(12):6893–6899. Available at: http://ar.iiarjournals.org/cgi/pmidlookup?view=long&pmid=26637913.

28. Whittaker S.R., Theurillat J.P., Van Allen E., Wagle N., Hsiao J., Cowley G.S. et al. A Genome-Scale RNA Interference Screen Implicates NF1 Loss in Resistance to RAF Inhibition. Cancer Discov. 2013;3(3):350–362. https://doi.org/10.1158/2159-8290.CD-12-0470.

29. Bishop D.T., Demenais F., Goldstein A.M., Bergman W., Bishop J.N., Bressacde Paillerets B. et al. Geographical Variation in the Penetrance of CDKN2A Mutations for Melanoma. J Natl Cancer Inst. 2002;94(12):894– 903. https://doi.org/10.1093/jnci/94.12.894.

30. Cachia A.R., Indsto J.O., McLaren K.M., Mann G.J., Arends M.J. CDKN2A Mutation and Deletion Status in Thin and Thick Primary Melanoma. Clin Cancer Res. 2000;6(9):3511–3515. https://clincancerres.aacrjournals.org/content/6/9/3511.long.

31. Guo L., Qi J., Wang H., Jiang X., Liu Y. Getting under the Skin: The role of CDK4/6 in Melanomas. Eur J Med Chem. 2020;204:112531. https://doi.org/10.1016/j.ejmech.2020.112531.

32. Schettini F., De Santo I., Rea C.G., De Placido P., Formisano L., Giuliano M. et al. CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. Front Oncol. 2018;8:608. https://doi.org/10.3389/fonc.2018.00608.

33. Robert C., Ribas A., Schachter J., Arance A., Grob J.J., Mortier L. et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma (KEYNOTE-006): Post-Hoc 5-Year Results from an Open-Label, Multicentre, Randomised, Controlled, Phase 3 Study. Lancet Oncol. 2019;20(9):1239–1251. https://doi.org/10.1016/S1470-2045(19)30388-2.

34. Tjulandin S., Demidov L., Moiseyenko V., Protsenko S., Semiglazova T., Odintsova S. et al. Novel PD-1 Inhibitor Prolgolimab: Expanding NonResectable/Metastatic Melanoma Therapy Choice. Eur J Cancer. 2021;149:222–232. https://doi.org/10.1016/j.ejca.2021.02.030.

35. Carvajal R.D., Sosman J.A., Quevedo J.F., Milhem M.M., Joshua A.M., Kudchadkar R.R. et al. Effect of Selumetinib vs Chemotherapy on Progression-Free Survival in Uveal Melanoma: A Randomized Clinical Trial. JAMA. 2014;311(23):2397–2405. https://doi.org/10.1001/jama.2014.6096.

36. Carvajal R.D., Piperno-Neumann S., Kapiteijn E., Chapman P.B., Frank S., Joshua A.M. et al. Selumetinib in Combination with Dacarbazine in Patients with Metastatic Uveal Melanoma: A Phase III, Multicenter, Randomized Trial (SUMIT). J Clin Oncol. 2018;36(12):1232–1239. https://doi.org/10.1200/JCO.2017.74.1090.

37. Johnson D.B., Menzies A.M., Zimmer L., Eroglu Z., Ye F., Zhao S. et al. Acquired BRAF Inhibitor Resistance: A Multicenter Meta-Analysis of the Spectrum and Frequencies, Clinical Behaviour, and Phenotypic Associations of Resistance Mechanisms. Eur J Cancer. 2015;51(18):2792– 2799. https://doi.org/10.1016/j.ejca.2015.08.022.

38. Poulikakos P.I., Persaud Y., Janakiraman M., Kong X., Ng C., Moriceau G. et al. RAF Inhibitor Resistance Is Mediated by Dimerization of Aberrantly Spliced BRAF(V600E). Nature. 2011;480(7377):387–390. https://doi.org/10.1038/nature10662.

39. Garraway L.A., Widlund H.R., Rubin M.A., Getz G., Berger A.J., Ramaswamy S. et al. Integrative Genomic Analyses Identify MITF as a Lineage Survival Oncogene Amplified in Malignant Melanoma. Nature. 2005;436(7047):117–122. https://doi.org/10.1038/nature03664.

40. Paraiso K.H., Xiang Y., Rebecca V.W., Abel E.V., Chen Y.A., Munko A.C. et al. PTEN Loss Confers BRAF Inhibitor Resistance to Melanoma Cells through the Suppression of BIM Expression. Cancer Res. 2011;71(7):2750–2760. https://doi.org/10.1158/0008-5472.CAN-10-2954.

41. Aasen S.N., Parajuli H., Hoang T., Feng Z., Stokke K., Wang J. et al. Effective Treatment of Metastatic Melanoma by Combining MAPK and PI3K Signaling Pathway Inhibitors. Int J Mol Sci. 2019;20(17):4235. https://doi.org/10.3390/ijms20174235.

42. Robert C., Schachter J., Long G.V., Arance A., Grob J.J., Mortier L. et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015;372(26):2521–2532. https://doi.org/10.1056/NEJMoa1503093.

43. Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F. et al. Safety, Activity, and Immune Correlates of AntiPD-1 Antibody in Cancer. N Engl J Med. 2012;366(26):2443–2454. https://doi.org/10.1056/NEJMoa1200690.

44. Hodi F.S., Chiarion-Sileni V., Gonzalez R., Grob J.J., Rutkowski P., Cowey C.L. et al. Nivolumab plus Ipilimumab or Nivolumab Alone versus Ipilimumab Alone in Advanced Melanoma (CheckMate 067): 4-Year Outcomes of a Multicentre, Randomised, Phase 3 Trial. Lancet Oncol. 2018;19(11): 1480–1492. https://doi.org/10.1016/S1470-2045(18)30700-9.

45. Wongchenko M.J., Ribas A., Dréno B., Ascierto P.A., McArthur G.A., Gallo J.D. et al. Association of Programmed Death Ligand-1 (PD-L1) Expression with Treatment Outcomes in Patients with BRAF Mutation-Positive Melanoma Treated with Vemurafenib or Cobimetinib Combined with Vemurafenib. Pigment Cell Melanoma Res. 2018;31(4):516–522. https://doi.org/10.1111/pcmr.12670.

46. Nishino M., Ramaiya N.H., Hatabu H., Hodi F.S. Monitoring Immune-Checkpoint Blockade: Response Evaluation and Biomarker Development. Nat Rev Clin Oncol. 2017;14(11):655–668. https://doi.org/10.1038/nrclinonc.2017.88.

47. Madore J., Vilain R.E., Menzies A.M., Kakavand H., Wilmott J.S., Hyman J. et al. PD-L1 Expression in Melanoma Shows Marked Heterogeneity within and between Patients: Implications for Anti-PD-1/PD-L1 Clinical Trials. Pigment Cell Melanoma Res. 2015;28(3):245–253. https://doi.org/10.1111/pcmr.12340.

48. Ascierto P.A., Robert C., Lewis K., Gutzmer R., Stroyakovskiy D., Gogas H.J. et al. 1102P Clinical Benefit in BRAFV600 Mutation-Positive Melanoma Defined by Programmed Death Ligand 1 (PD-L1) and/or Lactate Dehydrogenase (LDH) Status: Exploratory Analyses from the IMspire150 Study. Ann Oncol. 2020;31(Suppl 4):S745. https://doi.org/10.1016/j.annonc.2020.08.1225.

49. Nathan P., Dummer R., Long G.V., Ascierto P.A., Tawbi H.A., Robert C. et al. LBA43 Spartalizumab plus Dabrafenib and Trametinib (Sparta-DabTram) in Patients (pts) with Previously Untreated BRAF V600-Mutant Unresectable or Metastatic Melanoma: Results from the Randomized Part 3 of the Phase III COMBI-i Trial. Ann Oncol. 2020;31(Suppl 4):S1172. https://doi.org/10.1016/j.annonc.2020.08.2273.

50. Naito Y., Saito K., Shiiba K., Ohuchi A., Saigenji K., Nagura H., Ohtani H. CD8+ T Cells Infiltrated within Cancer Cell Nests as a Prognostic Factor in Human Colorectal Cancer. Cancer Res. 1998;58(16):3491–3494. Available at: https://cancerres.aacrjournals.org/content/58/16/3491.long.

51. Kiselevskiy M.V., Vlasenko R.Ya., Zabotina T.N., Kadagidze Z.G. Prognostic Signifi Cance of Tumorinfiltrating Lymphocytes. Immunologiya. 2019;40(1): 74–83. (In Russ.) https://doi.org/10.24411/0206-4952-2019-11009.

52. Havel J.J., Chowell D., Chan T.A. The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy. Nat Rev Cancer. 2019;19(3):133–150. https://doi.org/10.1038/s41568-019-0116-x.

53. Herbst R.S., Soria J.C., Kowanetz M., Fine G.D., Hamid O., Gordon M.S. et al. Predictive Correlates of Response to the Anti-PD-L1 Antibody MPDL3280A in Cancer Patients. Nature. 2014;515(7528):563–567. https://doi.org/10.1038/nature14011.

54. Tumeh P.C., Harview C.L., Yearley J.H., Shintaku I.P., Taylor E.J., Robert L. et al. PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature. 2014;515(7528):568–571. https://doi.org/10.1038/nature13954.

55. Mariathasan S., Turley S.J., Nickles D., Castiglioni A., Yuen K., Wang Y. et al. TGFß Attenuates Tumour Response to PD-L1 Blockade by Contributing to Exclusion of T Cells. Nature. 2018;554(7693):544–548. https://doi.org/10.1038/nature25501.

56. Spranger S., Bao R., Gajewski T.F. Melanoma-Intrinsic ß-Catenin Signalling Prevents Anti-Tumour Immunity. Nature. 2015;523(7559):231–235. https://doi.org/10.1038/nature14404.

57. Samoylenko I., Korotkova O.V., Shakhray E., Zabotina T., Berdnikov S., Tabakov D. et al. Recurrence-Free Survival (RFS) and Objective Response Rate (ORR) Phase 1/2 Study of Intralesional (IL) Neoadjuvant (Neo) Anti-PD1 Agents (aPD1) for Stage IIIB-IV Melanoma (MEL). J Clin Oncol. 2019;37(15_Suppl): e14171. https://doi.org/10.1200/JCO.2019.37.15_suppl.e14171.

58. Riaz N., Havel J.J., Makarov V., Desrichard A., Urba W.J., Sims J.S. et al. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell. 2017;171(4):934.e16–949.e16. https://doi.org/10.1016/j.cell.2017.09.028.

59. Rooney M.S., Shukla S.A., Wu C.J., Getz G., Hacohen N. Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity. Cell. 2015;160(1–2):48–61. https://doi.org/10.1016/j.cell.2014.12.033.

60. Daud A.I., Loo K., Pauli M.L., Sanchez-Rodriguez R., Sandoval P.M., Taravati K. et al. Tumor Immune Profiling Predicts Response to AntiPD-1 Therapy in Human Melanoma. J Clin Invest. 2016;126(9):3447–3452. https://doi.org/10.1172/JCI87324.

61. Lewis K., Ascierto P., Robert C., Munhoz R., Liszkay G., Marino L.D.L.C. et al. 307 Atezolizumab plus Vemurafenib and Cobimetinib Provides Favorable Survival Outcomes in Patients with High Tumor Mutation Burden and Proinflammatory Gene Signature in the Phase 3 IMspire150 Study. J Immunother Cancer. 2020;8(Suppl 3):A188–A189. https://doi.org/10.1136/jitc-2020-SITC2020.0307.

62. Flaherty K., Davies M.A., Grob J.J., Long G.V., Nathan P.D., Ribas A. et al. Genomic Analysis and 3-y Efficacy and Safety Update of COMBI-d: A Phase 3 Study of Dabrafenib (D) + Trametinib (T) vs D Monotherapy in Patients (pts) with Unresectable or Metastatic BRAF V600E/K-Mutant Cutaneous Melanoma. J Clin Oncol. 2016;34(15_suppl):9502. https://doi.org/10.1200/JCO.2016.34.15_suppl.9502.

63. Weber J.S., Del Vecchio M., Mandala M., Gogas H., Arance A.M., Dalle S. et al. 1310O – Adjuvant Nivolumab (NIVO) versus Ipilimumab (IPI) in Resected Stage III/IV Melanoma: 3-year Efficacy and Biomarker Results from the Phase III CheckMate 238 Trial. Ann Oncol. 2019;30:v533–v534. https://doi.org/10.1093/annonc/mdz255.

64. Samoilenko I.V., Zabotina T.N., Korotkova O.V., Soloviev S.S., Mikhailova I.N., Khatyrev S.A. et al. Relationship of the Immunophenotype of Lymphocytes with the Clinical Course of Disseminated Melanoma of the Skin. Rossiyskiy bioterapevticheskiy zhurnal = Russian Biotherapeutic Journal. 2012;11(2):45a. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=18890464.

65. Mikhailova I.N., Petenko N.N., Shubina I.Zh., Samoilenko I.V., Subramanian S., Ogorodnikova E.V. et al. Immunoregulatory CD4 + CD25 + T Cells in Patients with Disseminated Melanoma during Chemotherapy. Immunologiya. 2010;31(3):143–146. (In Russ.) Available at: https://www.medlit.ru/j/imm/imm1003143.htm.

66. Weide B., Martens A., Hassel J.C., Berking C., Postow M.A., Bisschop K. et al. Baseline Biomarkers for Outcome of Melanoma Patients Treated with Pembrolizumab. Clin Cancer Res. 2016;22(22):5487–5496. https://doi.org/10.1158/1078-0432.CCR-16-0127.

67. Martens A., Wistuba-Hamprecht K., Geukes Foppen M., Yuan J., Postow M.A., Wong P. et al. Baseline Peripheral Blood Biomarkers Associated with Clinical Outcome of Advanced Melanoma Patients Treated with Ipilimumab. Clin Cancer Res. 2016;22(12):2908–2918. https://doi.org/10.1158/1078-0432.CCR-15-2412.

68. Kadagidze Z.G., Zabotina T.N., Korotkova O.V., Tabakov D.V., Chertkova A.I., Borunova A.A. et al. Effect of Ipilimumab on the Subpopulation Structure of Lymphocytes in Patients with Disseminated Melanoma. Prakticheskaya onkologiya = Practical Oncology. 2017;18(3):285– 297. (In Russ.) https://doi.org/10.31917/1803285.

69. Novik A.V., Protsenko S.A., Baldueva I.A. Characteristics of Adoptive Immune System as Prognostic or Predictive Factors in the Patients with Solid Tumors: A Systematic Review. Effektivnaya farmakoterapiya = Effective Pharmacotherapy. 2020;16(33):58–75. (In Russ.) Available at: https://umedp.ru/articles/ispolzovanie_otsenki_sostoyaniya_adaptivnoy_immunnoy_sistemy_u_bolnykh_so_zlokachestvennymi_solidnym.html.

70. Barry K.C., Hsu J., Broz M.L., Cueto F.J., Binnewies M., Combes A.J. et al. A Natural Killer-Dendritic Cell Axis Defines Checkpoint TherapyResponsive Tumor Microenvironments. Nat Med. 2018;24(8):1178–1191. https://doi.org/10.1038/s41591-018-0085-8.

71. Zhou J., Mahoney K.M., Giobbie-Hurder A., Zhao F., Lee S., Liao X. et al. Soluble PD-L1 as a Biomarker in Malignant Melanoma Treated with Checkpoint Blockade. Cancer Immunol Res. 2017;5(6):480–492. https://doi.org/10.1158/2326-6066.CIR-16-0329.

72. Schumacher T.N., Schreiber R.D. Neoantigens in Cancer Immunotherapy. Science. 2015;348(6230):69–74. https://doi.org/10.1126/science.aaa4971.

73. Goodman A.M., Kato S., Bazhenova L., Patel S.P., Frampton G.M., Miller V. et al. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol Cancer Ther. 2017;16(11):2598– 2608. https://doi.org/10.1158/1535-7163.MCT-17-0386.

74. Ashikhmin Ya.I., Syrkin A.L., Zamyatnin A.A. Jr, Zhang Y., Kopylov Ph.Yu. The Gut Microbiota in Cardiovascular Diseases: From Biomarkers and Potential Targets to Personalized Interventions. Curr Pharmacogenomics Person Med. 2018;16(1):75–85. http://doi.org/10.2174/1875692116666180511170329.

75. Chen J., Domingue J.C., Sears C.L. Microbiota Dysbiosis in Select Human Cancers: Evidence of Association and Causality. Semin Immunol. 2017;32:25–34. http://doi.org/10.1016/j.smim.2017.08.001.

76. Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V. et al. Gut Microbiome Modulates Response to AntiPD-1 Immunotherapy in Melanoma Patients. Science. 2018;359(6371):97– 103. http://doi.org/10.1126/science.aan4236.

77. Baruch E.N., Youngster I., Ben-Betzalel G., Ortenberg R., Lahat A., Katz L. et al. Fecal Microbiota Transplant Promotes Response in ImmunotherapyRefractory Melanoma Patients. Science. 2021;371(6529):602–609. http://doi.org/10.1126/science.abb5920.

78. Dubin K., Callahan M.K., Ren B., Khanin R., Viale A., Ling L. et al. Intestinal Microbiome Analyses Identify Melanoma Patients at Risk for CheckpointBlockade-Induced Colitis. Nat Commun. 2016;7:10391. http://doi.org/10.1038/ncomms10391.

79. Wan J.C.M., Massie C., Garcia-Corbacho J., Mouliere F., Brenton J.D., Caldas C. et al. Liquid Biopsies Come of age: Towards Implementation of Circulating Tumour DNA. Nat Rev Cancer. 2017;17(4):223–238. http://doi.org/10.1038/nrc.2017.7.

80. Zhukov N.V., Zaretskiy A.R., Lukyanov S.A., Rumyantsev S.A. Circulating Tumor DNA Detection (Liquid Biopsy): Prospects in Oncology. Onkogematologiya = Oncohematology. 2014;9(4):28–36. (In Russ.) Available at: https://oncohematology.abvpress.ru/ongm/article/view/129.

81. Kazeminasab S., Emamalizadeh B., Jouyban-Gharamaleki V., Taghizadieh A., Khoubnasabjafari M., Jouyban A. Tips for Improving the Quality and Quantity of the Extracted DNA from Exhaled Breath Condensate Samples. Nucleosides Nucleotides Nucleic Acids. 2020;39(5):688–698. http://doi.org/10.1080/15257770.2019.1677910.

82. Reid A.L., Freeman J.B., Millward M., Ziman M., Gray E.S. Detection of BRAF-V600E and V600K in Melanoma Circulating Tumour Cells by Droplet Digital PCR. Clin Biochem. 2015;48(15):999–1002. http://doi.org/10.1016/j.clinbiochem.2014.12.007.

83. Bidard F.C., Madic J., Mariani P., Piperno-Neumann S., Rampanou A., Servois V. et al. Detection Rate and Prognostic Value of Circulating Tumor Cells and Circulating Tumor DNA in Metastatic Uveal Melanoma. Int J Cancer. 2014;134(5):1207–1213. http://doi.org/10.1002/ijc.28436.

84. Sanmamed M.F., Fernández-Landázuri S., Rodríguez C., Zárate R., Lozano M.D., Zubiri L. et al. Quantitative Cell-Free Circulating BRAFV600E Mutation Analysis by Use of Droplet Digital PCR in the Follow-Up of Patients with Melanoma Being Treated with BRAF Inhibitors. Clin Chem. 2015;61(1):297–304. http://doi.org/10.1373/clinchem.2014.230235.

85. Lee J.H., Saw R.P., Thompson J.F., Lo S., Spillane A.J., Shannon K.F. et al. Pre-Operative ctDNA Predicts Survival in High-Risk Stage III Cutaneous Melanoma Patients. Ann Oncol. 2019;30(5):815–822. http://doi.org/10.1093/annonc/mdz075.

86. Newman A.M., Bratman S.V., To J., Wynne J.F., Eclov N.C., Modlin L.A. et al. An Ultrasensitive Method for Quantitating Circulating Tumor DNA with Broad Patient Coverage. Nat Med. 2014;20(5):548–554. http://doi.org/10.1038/nm.3519.

87. Tan L., Sandhu S., Lee R.J., Li J., Callahan J., Ftouni S. et al. Prediction and Monitoring of Relapse in Stage III Melanoma Using Circulating Tumor DNA. Ann Oncol. 2019 1;30(5):804–814. http://doi.org/10.1093/annonc/mdz048.

88. Dummer R., Hauschild A., Santinami M., Atkinson V., Mandalà M., Kirkwood J.M. et al. Five-Year Analysis of Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma. N Engl J Med. 2020;383(12):1139–1148. http://doi.org/10.1056/NEJMoa2005493.

89. Ascierto P.A., Minor D., Ribas A., Lebbe C., O’Hagan A., Arya N. et al. Phase II Trial (BREAK-2) of the BRAF Inhibitor Dabrafenib (GSK2118436) in Patients with Metastatic Melanoma J Clin Oncol. 2013;31(26):3205– 3211. http://doi.org/10.1200/JCO.2013.49.8691.

90. Gray E.S., Rizos H., Reid A.L., Boyd S.C., Pereira M.R., Lo J. et al. Circulating Tumor DNA to Monitor Treatment Response and Detect Acquired Resistance in Patients with Metastatic Melanoma. Oncotarget. 2015;6(39):42008–42018. http://doi.org/10.18632/oncotarget.5788.

91. Lee J.H., Long G.V., Boyd S., Lo S., Menzies A.M., Tembe V. et al. Circulating Tumour DNA Predicts Response to Anti-PD1 Antibodies in Metastatic Melanoma. Ann Oncol. 2017;28(5):1130–1136. http://doi.org/10.1093/annonc/mdx026.

92. Wong S.Q., Raleigh J.M., Callahan J., Vergara I.A., Ftouni S., Hatzimihalis A. et al. Circulating Tumor DNA Analysis and Functional Imaging Provide Complementary Approaches for Comprehensive Disease Monitoring in Metastatic Melanoma. JCO Precis Oncol. 2017;(1):1–14. https://doi.org/10.1200/po.16.00009.

93. Pilla L., Alberti A., Di Mauro P., Gemelli M., Cogliati V., Cazzaniga M.E. et al. Molecular and Immune Biomarkers for Cutaneous Melanoma: Current Status and Future Prospects. Cancers (Basel). 2020;12(11):3456. https://doi.org/10.3390/cancers12113456.


Review

For citations:


Zaretsky AR, Demidov LV, Samoylenko IV. Biomarkers in metastatic melanoma of the skin: can we more accurately choose the tactics of treating our patients? Meditsinskiy sovet = Medical Council. 2021;(9):48-63. (In Russ.) https://doi.org/10.21518/2079-701X-2021-9-48-63

Views: 610


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)