Preview

Meditsinskiy sovet = Medical Council

Advanced search

Interferoncontaining drugs: clinical, pharmacological, and immunological points of their use for respiratory diseases treatment

https://doi.org/10.21518/2079-701X-2021-11-210-220

Abstract

Nowadays pharmacological group classified by the ATX L03AX code as immunostimulants is demand among doctors of various specialties. The main area of application of such drugs is infectious respiratory viral processes, which are associated not only with the pathogenetic action of viruses, but also with a high risk of bacterial complications. Thus, the practitioner is faced with the task of preventing such complications and choosing an immunomodulatory drug with the most pronounced pharmacodynamic properties in this regard. In Russia, there are many drugs belonging to the group of immunomodulators with different mechanisms of action and end pharmacological and immunological points of application. The emphasis of the mechanisms of action of such drugs is made on the effect on the systems of both innate and adaptive immunity. At the same time, the severity of the effect on both one and the other immune system in drugs that is strong enough may differ, which requires special attention from the doctor when choosing a drug in a particular situation. A special place in the group of immunomodulatory drugs used for infectious respiratory diseases is occupied by interferoncontaining drugs that contain interferon alfa-2b (IFN-a2b). In addition, there are combination of IFN-a2b with an immunoglobulin complex, which increases the effectiveness of this drug in the treatment of various infectious and inflammatory diseases. The article describes the theoretical and practical aspects of administration this combined drug in pediatric practice and presents own experimental studies.

About the Authors

J. M. Salmasi
Pirogov Russian National Research Medical University
Russian Federation

Jean M. Salmasi, Dr. Sci. (Med.), Professor, Head of the Department of Pathophysiology and Clinical Pathophysiology, Faculty of Medicine.

1, Ostrovityanov St., Moscow, 117997



A. N. Kazimirskii
Pirogov Russian National Research Medical University
Russian Federation

Alexander N. Kazimirskii, Dr. Sci. (Biol.), Associate Professor, Leading Researcher, Department of Molecular Technologies.

1, Ostrovityanov St., Moscow, 117997



I. V. Kukes
International Association of Clinical Pharmacologists and Pharmacists
Russian Federation

Ilya V. Kukes, Cand. Sci. (Med.), Laureate of the Grant of the President of the Russian Federation, Clinical Pharmacologist, Immunologist, Head of the Scientific and Clinical Department.

2, Bldg. 1, Malaya Kalitnikovskaya St., Moscow, 109147



G. V. Poryadin
Pirogov Russian National Research Medical University
Russian Federation

Gennady V. Poryadin, Corr. Member of RAS, Dr. Sci. (Med.), Professor, Department of Pathophysiology and Clinical Pathophysiology, Faculty of Medicine.

1, Ostrovityanov St., Moscow, 117997



D. I. Pozdnyakov
International Association of Clinical Pharmacologists and Pharmacists; Pyatigorsk Medical and Pharmaceutical Institute – a branch of the Volgograd State Medical University
Russian Federation

Dmitry I. Pozdnyakov, Cand. Sci. (Pharm.), the Member of International Association of Clinical Pharmacologists and Pharmacists; Associate Professor of the Department of Pharmacology with the Course of Clinical Pharmacology, Pyatigorsk Medical and Pharmaceutical Institute – a branch of the Volgograd SMU.

2, Bldg. 1, Malaya Kalitnikovskaya St., Moscow, 109147; 11, Kalinin Ave., Pyatigorsk, Stavropol Territory, 357532



References

1. Novikov D.K., Novikov P.D., Titova N.D. Immunocorrection, Immunoprophylaxis, Immunorehabilitation. Vitebsk: VGMU: 2006.198 p. (In Russ.) Available at: https://elib.vsmu.by/handle/123/11272.

2. Romantsov M.G., Shuldyakova O.G., Kovalenko A.L. Immunomodulators with Antiviral Activity. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2004;(1):29–33. (In Russ.) Available at: https://www.scienceeducation.ru/ru/article/view?id=1993.

3. Jurkiewicz D., ZielnikJurkiewicz B. Bacterial Lysates in the Prevention of Respiratory Tract Infections. Otolaryngol Pol. 2018;72(5):1–8. https://doi.org/10.5604/01.3001.0012.7216.

4. Suárez N., Ferrara F., Rial A., Dee V., Chabalgoity J.A. Bacterial Lysates as Immunotherapies for Respiratory Infections: Methods of Preparation. Front Bioeng Biotechnol. 2020;8:545. https://doi.org/10.3389/fbioe.2020.00545.

5. Kearney S.C., Dziekiewicz M., Feleszko W. Immunoregulatory and Immunostimulatory Responses of Bacterial Lysates in Respiratory Infections and Asthma. Ann Allergy Asthma Immunol. 2015;114(5):364–369. https://doi.org/10.1016/j.anai.2015.02.008.

6. D’Alò G.L., Zorzoli E., Loria A., Terracciano E., Zaratti L., Franco E. Bacterial lysates: history and availability. Ig Sanita Pubbl. 2017;73(4):381–396. (In Italian). Available at: https://pubmed.ncbi.nlm.nih.gov/29099828/.

7. Dang A.T., Pasquali C., Ludigs K., Guarda G. OM-85 Is an Immunomodulator of Interferon-β Production and Inflammasome Activity. Sci Rep. 2017;7:43844. https://doi.org/10.1038/srep43844.

8. Souza F.C., Mocellin M., Ongaratto R., Leitão L.A.A., Friedrich F.O., Silveira V.D. et al. OM-85 BV for Primary Prevention of Recurrent Airway Infections: A Pilot Randomized, DoubleBlind, PlaceboControlled Study. Einstein (Sao Paulo). 2020;18:eAO5262. https://doi.org/10.31744/einstein_ journal/2020ao5262.

9. Schaad U.B. OM-85 BV, An Immunostimulant in Pediatric Recurrent Respiratory Tract Infections: A Systematic Review. World J Pediatr. 2010;6(1):5–12. https://doi.org/10.1007/s12519-010-0001-x.

10. Mauël J. Stimulation of Immunoprotective Mechanisms by OM-85 BV. A review of Results from in vivo and in vitro Studies. Respiration. 1994;61(1):8–15. https://doi.org/10.1159/000196372.

11. Kharit S.M., Galustyan A.N. Azoximer Bromide Is a Safe and Effective Preparation for the Treatment of Acute Respiratory Infections of the Upper Respiratory Tract in Children: An Overview of the Results of DoubleBlind, PlaceboControlled, Randomized Clinical Trials of Phase II and III. Pediatriya. Prilozhenie k zhurnalu Consilium Medicum = Pediatrics. Consilium Medicum. 2017;(2):55–61. (In Russ.) Available at: https://omnidoctor.ru/library/izdaniya-dlya-vrachey/pediatriyaconsiliummedicum/ped2017/ped2017_2/azoksimerabromid-bezopasnyy-ieffektivnyypreparat-pri-lecheniiostrykh-respiratornykhinfektsiy-ve/.

12. Karaulov A.V., Gorelov A.V. Use of Azoximer Bromide for Treatment of Children’s Inflammatory Infections of Respiratory System: A Meta Analysis of Controlled Clinical Studies. Zhurnal infektologii = Journal of Infectology. 2019;11(4):31–41. (In Russ.) https://doi.org/10.22625/20726732-2019-11-4-31-41.

13. Bulgakova V.A. Immunomodulators for the Prevention and Treatment of Acute Respiratory Infections: Efficacy of Azoximer Bromide. Terapevticheskiy arkhiv = Therapeutic Archive. 2014;86(12):92–97. (In Russ.) https://doi.org/10.17116/terarkh2014861292-97.

14. Serebrennikova S.N., Seminsky I.Zh., Klimenkov I.V., Semenov N.V. The Role of Azoximera Bromide in Regulatory Mechanisms of Cell’s Reactions at the Microbic Inflammation. Acta Biomedica Scientifica. 2012;(3–2): 312–315. (In Russ.) Available at: https://www.actabiomedica.ru/jour/article/view/942.

15. Pinegin B.V., Dagil Yu.A., Vorobieva N.V., Pashchenkov M.V. Azoximer Bromide Effect on the Neutrophil Extracellular Traps Formation. RMZh = RMJ. 2019;1(II):42–46. (In Russ.) Available at: https://www.rmj.ru/articles/immunologiya/Vliyanie_azoksimera_bromida_na_formirovanie_vnekletochnyh_neytrofilynyh_lovushek/.

16. Ershov F.I., Shuldyakov A.A., Romantsov M.G., Lyapyna E.P., Soboleva L.A. Results and Prospects of Interferone Inducers Using in Infectious Diseases Treatment. Vestnik Rossiyskoy Akademii Meditsinskikh Nauk = Annals of the Russian Academy of Medical Sciences. 2013;(10):46–52. (In Russ.) Available at: https://vestnikramn.spr-journal.ru/jour/article/viewFile/139/78.

17. Obraztsova E.V., Osidak L.V., Afanaseva O.I., Golovacheva E.G., Milkint K.K., Protasova S.F., Arinevsky V.P. Recombinant Interferon Alpha-2 Preparations in the Treatment of Acute Respiratory Infections in Children. Detskie infektsii = Children Infections. 2005;4(2):46–50. (In Russ.) Available at: https://elibrary.ru/item.asp?id=12849659.

18. Durneva E.I., Sokolov D.I., Yarmolinskaya M.I., Selkov S.A. Interferons: Pathogenetic Rationale for the Treatment of External Genital Endometriosis and Clinical Efficacy. Zhurnal akusherstva i zhenskikh bolezney = Journal of Obstetrics and Women’s Diseases. 2019;68(1):47–58. (In Russ.) https://doi.org/10.17816/JOWD68147-58.

19. Klyuchnikov S.O., Zaytseva O.V., Osmanov I.M., Krapivkin A.I., Keshishyan E.S., Blinova V., Bystrova O.V. Acute respiratory diseases in children. Moscow: Medkniga; 2008. 36 p. (In Russ.) Available at: https://cyberleninka.ru/article/n/ostryerespiratornye-zabolevaniya-u-deteyposobie-dlya-vrachey.

20. Korth M.J., Kash J.C., Furlong J.C., Katze M.G. Virus Infection and the Interferon Response: A Global View through Functional Genomics. Methods Mol Med. 2005;116:37–55. https://doi.org/10.1385/1-59259-939-7:037.

21. Randall R.E., Goodbourn S. Interferons and Viruses: An Interplay between Induction, Signalling, Antiviral Responses and Virus Countermeasures. J Gen Virol. 2008;89(Pt 1):1–47. https://doi.org/10.1099/vir.0.83391-0.

22. Grandvaux N., tenOever B.R., Servant M.J., Hiscott J. The Interferon Antiviral Response: From Viral Invasion to Evasion. Curr Opin Infect Dis. 2002;15(3):259–267. https://doi.org/10.1097/00001432-20020600000008.

23. Shim J.M., Kim J., Tenson T., Min J.Y., Kainov D.E. Influenza Virus Infection, Interferon Response, Viral CounterResponse, and Apoptosis. Viruses. 2017;9(8):223. https://doi.org/10.3390/v9080223.

24. GonzálezNavajas J.M., Lee J., David M., Raz E. Immunomodulatory Functions of Type I Interferons. Nat Rev Immunol. 2012;12(2):125–135. https://doi.org/10.1038/nri3133.

25. Kazimirskii A.N., Poryadin G.V., Salmasi J.M., Semenova L.Y. Endogenous Regulators of the Immune System (sCD100, Malonic Dialdehyde, and Arginase). Byulleten ehksperimental’noy biologii i meditsiny = Bulletin of Experimental Biology and Medicine. 2018;164(11):652–660. (In Russ.) Available at: http://iramn.ru/journals/bbm/2017/11/1028/.

26. Kazimirskii A.N., Salmasi J.M., Poryadin G.V. Neutrophil Extracellular Traps Regulate the Development of Innate and Adaptive Immune System. RMZh. Meditsinskoe obozrenie = RMJ. Medical Review. 2020;4(1):38–41. (In Russ.) Available at: https://www.rusmedreview.com/articles/immunologiya/Neytrofilynye_ekstrakletochnye_lovushki__regulyatory_formirovaniya_vroghdennogo_i_adaptivnogo_immuniteta/.

27. Kazimirskii A.N., Salmasi J.M., Poryadin G.V. Antivira System of Innate Immunity: COVID-19 Pathogenesis and Treatment. Vestnik RGMU = Bulletin of Russian State Medical University. 2020;(5):5–13. (In Russ.) Available at: https://vestnik.rsmu.press/archive/2020/5/2/abstract?lang=ru.

28. Poryadin G.V., Salmasi J.M., Kukes I.V., Kazimirsky A.N., Danilov An.B., Lazareva N.B., Danilov A.B. Modern Knowledge of Inflammatory Diseases of Various Localization and Etiology: New Possibilities of Pharmacotherapy. Farmateka = Pharmateca. 2020;27(14):37–46. (In Russ.). https://doi.org/10.18565/pharmateca.2020.14.00-00.

29. Ysebrant de Lendonck L., Martinet V., Goriely S. Interferon Regulatory Factor 3 in Adaptive Immune Responses. Cell Mol Life Sci. 2014;71(20):3873–3883. https://doi.org/10.1007/s00018-014-1653-9.

30. Ivashkiv L.B., Donlin L.T. Regulation of Type I Interferon Responses. Nat Rev Immunol. 2014;14(1):36–49. https://doi.org/10.1038/nri3581.

31. Mehta D., Petes C., Gee K., Basta S. The Role of Virus Infection in Deregulating the Cytokine Response to Secondary Bacterial Infection. J Interferon Cytokine Res. 2015;35(12):925–934. https://doi.org/10.1089 jir.2015.0072.

32. Curreli S., Romerio F., Mirandola P., Barion P., Bemis K., Zella D. Human Primary CD4 + T Cells Activated in the Presence of IFN-Alpha 2b Express Functional Indoleamine 2,3-Dioxygenase. J Interferon Cytokine Res. 2001;21(6):431–437. https://doi.org/10.1089/107999001750277916.

33. Gallagher K.M., Lauder S., Rees I.W., Gallimore A.M., Godkin A.J. Type I Interferon (IFN Alpha) Acts Directly on Human Memory CD4+ T Cells Altering Their Response to Antigen. J Immunol. 2009;183(5):2915–2920. https://doi.org/10.4049/jimmunol.0801607.

34. Nguyen K.B., Watford W.T., Salomon R., Hofmann S.R., Pien G.C., Morinobu A. et al. Critical Role for STAT4 Activation by Type 1 Interferons in the InterferonGamma Response to Viral Infection. Science. 2002;297(5589):2063–2066. https://doi.org/10.1126/science.1074900.

35. Novikova L.I. Zueva M.M., Aleshkin V.A., Borisova I.V., Panurina R.L. Study of the Pharmacokinetics of a Complex Immunoglobulin Preparation after Oral Administration. International Journal on Immunorehabilitation. 2010;12(2):236b–237. (In Russ.) Available at: https://elibrary.ru/item.asp?id=13862620.


Review

For citations:


Salmasi JM, Kazimirskii AN, Kukes IV, Poryadin GV, Pozdnyakov DI. Interferoncontaining drugs: clinical, pharmacological, and immunological points of their use for respiratory diseases treatment. Meditsinskiy sovet = Medical Council. 2021;(11):210-220. (In Russ.) https://doi.org/10.21518/2079-701X-2021-11-210-220

Views: 704


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)