Preview

Meditsinskiy sovet = Medical Council

Advanced search

Possibilities of daytime anxolytics in the correction of residual neurological manifestations of COVID-19

https://doi.org/10.21518/2079-701X-2021-12-50-60

Abstract

Introduction. In  addition to acute manifestations, coronavirus infection is characterized by long-lasting symptoms: asthenia, somatic vegetative manifestations, sleep disorders and psychoemotional background, the  question of  therapeutic correction of which is especially relevant.

The aim of the study was to study the mental, somatoform and cognitive aspects of anxiety disorders after coronavirus infection during treatment with tofizopam (Grandaxin®) at 150 mg / day.

Materials and methods. The study involved patients who had a new coronavirus infection, who 4 weeks after the end of treatment for the underlying disease had complaints that suggest the presence of an anxiety disorder. The Hamilton scale was used to assess the level of anxiety. The patients were examined before the start of treatment, after 2, 4 and 6 weeks of therapy.

Results. Prior to the start of therapy, all patients had an overall high level of anxiety: the average HAM-A score was 31.72 ± 2.24  points. At the  end of  Grandaxin® therapy, all patients showed a  decrease in  the  level of  anxiety: the  average score for HAM-A was 12.68 ± 2.04 points (p < 0.001). At the end of the course of therapy, patients noted an increase in mental performance, improved memory and attention, that is, a decrease in the severity of cognitive disorders associated with anxiety was> distinct – the average score on the “cognitive disorders” subscale decreased three times – from 1.6 ± 0.12 to 0.5 ± 0.09 (p˂0.001).

Conclusions. Disorders of the psychoemotional background (more often in the form of increased personal anxiety), sleep disorders, autonomic disorders, asthenic syndrome significantly affect the quality of life of patients who have suffered a new coronavirus infection. A comprehensive approach is needed in the clinical diagnosis of the long-term consequences of a new coronavirus infection and their subsequent correction with drug therapy. 

About the Authors

E. A. Alexandrova
Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko
Russian Federation

Cand. Sci. (Med.), Associate Professor, Neurologist, Extrapyramidal Disorders Office, 

190, Rodionov St., Nizhny Novgorod, 603126



E. V. Parshina
Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko
Russian Federation

Cand. Sci. (Med.), Head of the Neurological Department, 

190, Rodionov St., Nizhny Novgorod, 603126



I. V. Borodacheva
Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko
Russian Federation

Cand. Sci. (Med.), Neurologist, Neurological Department, 

190, Rodionov St., Nizhny Novgorod, 603126



A. G. Suslov
City Clinical Hospital No. 39
Russian Federation

Cand. Sci. (Med.), Neurologist, Neurological Department, 

144, Moskovskoe Shosse, Nizhny Novgorod, 603028



K. M. Beliakov
Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko
Russian Federation

Dr. Sci. (Med.), Head of the Department of Functional Diagnostics, 

190, Rodionov St., Nizhny Novgorod, 603126



V. S. Yulin
Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko
Russian Federation

Neurologist, Neurological Department, 

190, Rodionov St., Nizhny Novgorod, 603126



S. V. Fomin
Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko
Russian Federation

Neurologist, Neurological Department, 

190, Rodionov St., Nizhny Novgorod, 603126



References

1. Greenhalgh T., Knight M., A’Court C., Buxton M., Husain L. Management of post-acute Covid-19 in primary care. BMJ. 2020;370:m3026. https://doi.org/10.1136/bmj.m3026.

2. Chan A.T., Drew D.A., Nguyen L.H., Joshi A.D., Ma W., Guo C.G. et. al. COPE Consortium. The COronavirus Pandemic Epidemiology (COPE) Consortium: A Call to Action. Cancer Epidemiol Biomarkers Prev. 2020;29(7):1283–1289. https://doi.org/10.1158/1055-9965.EPI-20-0606.

3. Dani M., Dirksen A., Taraborrelli P., Torocastro M., Panagopoulos D., Sutton R., Lim P.B. Autonomic dysfunction in “long COVID”: rationale, physiology and management strategies. Clin Med (Lond). 2021;21(1):e63–e67. https://doi.org/10.7861/clinmed.2020-0896.

4. Kroenke K., Spitzer R.L., Williams J.B., Monahan P.O., Löwe B. Anxiety disorders in primary care: prevalence, impairment, comorbidity, and detection. Ann Intern Med. 2007;146(5):317–325. https://doi.org/10.7326/0003-4819-146-5-200703060-00004.

5. Goldstein D.S. The extended autonomic system, dyshomeostasis, and COVID-19. Clin Auton Res. 2020;30(4):299–315. https://doi.org/10.1007/s10286-020-00714-0.

6. Fudim M., Qadri Y.J., Ghadimi K., MacLeod D.B., Molinger J., Piccini J.P. et al. Implications for Neuromodulation Therapy to Control Inflammation and Related Organ Dysfunction in COVID-19. J Cardiovasc Transl Res. 2020;13(6):894–899. https://doi.org/10.1007/s12265-020-10031-6.

7. Staedtke V., Bai R.Y., Kim K., Darvas M., Davila M.L., Riggins G.J. et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature. 2018;564(7735):273–277. https://doi.org/10.1038/s41586-018-0774-y.

8. Guilmot A., Maldonado Slootjes S., Sellimi A., Bronchain M., Hanseeuw B., Belkhir L. et al. Immune-mediated neurological syndromes in SARS-CoV2-infected patients. J Neurol. 2021;268(3):751–757. https://doi.org/10.1007/s00415-020-10108-x.

9. Ruzieh M., Batizy L., Dasa O., Oostra C., Grubb B. The role of autoantibodies in the syndromes of orthostatic intolerance: a systematic review. Scand Cardiovasc J. 2017;51(5):243–247. https://doi.org/10.1080/14017431.2017.1 355068.

10. Li H., Kem D.C., Reim S., Khan M., Vanderlinde-Wood M., Zillner C. et al. Agonistic autoantibodies as vasodilators in orthostatic hypotension: a new mechanism. Hypertension. 2012;59(2):402–408. https://doi.org/10.1161/HYPERTENSIONAHA.111.184937.

11. Chigr F., Merzouki M., Najimi M. Autonomic Brain Centers and Pathophysiology of COVID-19. ACS Chem Neurosci. 2020;11(11):1520– 1522. https://doi.org/10.1021/acschemneuro.0c00265.

12. Carfi A., Bernabei R., Landi F. Рersistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603–605. https://doi.org/10.1001/jama.2020.12603.

13. El Sayed S., Shokry D., Gomaa S.M. Post-COVID-19 fatigue and anhedonia: A cross-sectional study and their correlation to post-recovery period. Neuropsychopharmacol Rep. 2021;41(1):50–55. https://doi.org/10.1002/npr2.12154.

14. Ferraro F., Calafiore D., Dambruoso F., Guidarini S., de Sire A. COVID-19 related fatigue: Which role for rehabilitation in post-COVID-19 patients? A case series. J Med Virol. 2021;93(4):1896–1899. https://doi.org/10.1002/jmv.26717.

15. Ortelli P., Ferrazzoli D., Sebastianelli L., Engl M., Romanello R., Nardone R. et al. Neuropsychological and neurophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: insights into a challenging symptom. J Neurol Sci. 2021;420:117271. https://doi.org/10.1016/j.jns.2020.117271.

16. Townsend L., Dyer A.H., Jones K., Dunne J., Mooney A., Gaffney F. et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020;15(11):е0240784. https://doi.org/10.1371/journal.pone.0240784.

17. Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen C. et al. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med. 2020;382(23):2268–2270. https://doi.org/10.1056/nejmc2008597.

18. Benussi A., Di Lorenzo F., Dell’Era V., Cosseddu M., Alberici A., Caratozzolo S. et al. Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia. Neurology. 2017;89(7):665–672. https://doi.org/10.1212/WNL.0000000000004232.

19. Sumner P., Edden R.A., Bompas A., Evans C.J., Singh K.D. More GABA, less distraction: a neurochemical predictor of motor decision speed. Nat Neurosci. 2010;13(7):825–827. https://doi.org/10.1038/nn.2559.

20. Porges E.C., Woods A.J., Edden R.A., Puts N.A., Harris A.D., Chen H. et al. Frontal gamma-aminobutyric acid concentrations are associated with cognitive performance in older adults. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(1):38–44. https://doi.org/10.1016%2Fj.bpsc.2016.06.004.

21. Versace V., Sebastianelli L., Ferrazzoli D., Romanello R., Ortelli P., Saltuari L. et al. Intracortical GABAergic dysfunction in patients with fatigue and dysexecutive syndrome after COVID-19. Clin Neurophysiol. 2021;132(5):1138–1143. https://doi.org/10.1016/j.clinph.2021.03.001.

22. Stellwagen D., Malenka R.C. Synaptic scaling mediated by glial TNF-α Nature. 2006;440(7087):1054–1059. https://doi.org/10.1038/nature04671.

23. Nikbakht F., Mohammadkhanizadeh A., Mohammadi E. How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms. Mult Scler Relat Disord. 2020;46:102535. Avialable at: https://pubmed.ncbi.nlm.nih.gov/33010584/.

24. Tian J., Milddleton B., Kaufman D.L. GABA administration prevents severe illness and death following coronavirus infection in mice. bioRxiv. 2020:2020.10.04.325423. https://doi.org/10.1101/2020.10.04.325423.

25. Baller E.B., Hogan C.S., Fusunyan M.A., Ivkovic A., Luccarelli J.W., Madva E. et al. Neurocovid: Pharmacological Recommendations for Delirium Associated with COVID-19. Psychosomatics. 2020;61(6):585–596. https://doi.org/10.1016/j.psym.2020.05.013.

26. Smulevich A.B., Drobizhev M.Yu., Ivanov S.V. Clinical effects of benzodiazepine tranquilizers in psychiatry and general medicine. Moscow: Media-Sfera; 2005. 88 р. (In Russ.) Avialable at: https://otherreferats.allbest.ru/medicine/00516644_0.html.

27. Bandelow B., Sher L., Bunevicius R., Hollander E., Kasper S., Zohar J. et al. Guidelines for the pharmacological treatment of anxiety disorders, obsessive-compulsive disorder and posttraumatic stress disorder in primary care. Int J Psychiatry Clin Pract. 2012;16(2):77–84. https://doi.org/10.3109/13651501.2012.667114.

28. Korneeva A. Safe treatment of stress disorders in the practice of psychiatrists and psychologists. Lechaschi Vrach. 2018;(6):22. (In Russ.) Available at: https://www.lvrach.ru/partners/grandaxin/15437004.

29. Duma S.N., Lisichenko O.V., Lukyanova G.V. Psychovegetative, asthenic and cognitive disorders in connective tissue dysplasia: the choice of optimal therapy. Farmateka. 2012;(7):131–135. (In Russ.) Available at: https://pharmateca.ru/ru/archive/article/8436.

30. Gustov A.V., Alexandrova E.A., Parshina E.V., Borodacheva I.V., Belyakov K.M. The effectiveness of Sertraline as a co-analgesic in chronic pain syndromes of the lower back. International Journal of Applied and Fundamental Research. 2016;8(2):158–161. (In Russ.) Available at: https://www.appliedresearch.ru/ru/article/view?id=9995.

31. Sierralta F., Miranda H.F. Analgesic effect of benzodiazepines and flumazenil. Gen Pharmacol. 1992;23(4):739–742. https://doi.org/10.1016/0306- 3623(92)90158-g.

32. Dolezal T., Krsiak M. Augmentation of analgesic effect of ibuprofen by alprazolam in experimental model of pain. Physiol Res. 2002;51(2):179– 184. Available at: https://pubmed.ncbi.nlm.nih.gov/12108928/.

33. Rad R.E., Ghaffari F., Fotokian Z., Ramezani A. The effectiveness of ibuprofen and lorazepam combination therapy in treating the symptoms of acute Migraine: A randomized clinical trial. Electron Physician. 2017;9(3):3912–3917. https://doi.org/10.19082/3912.

34. Talarek S., Fidecka S. Role of nitric oxide in benzodiazepines-induced antinociception in mice. Pol J Pharmacol. 2002;54(1):27–34. Available at: https://pubmed.ncbi.nlm.nih.gov/12020041/.

35. Jiménez-Velázquez G., López-Muñoz F.J., Fernández-Guasti A. Participation of the GABA/benzodiazepine receptor and the NO-cyclic GMP pathway in the “antinociceptive-like effects” of diazepam. Pharmacol Biochem Behav. 2008;91(1):128–133. https://doi.org/10.1016/j.pbb.2008.06.021.

36. Green S.J. Covid-19 accelerates endothelial dysfunction and nitric oxide deficiency. Microbes Infect. 2020;22(4–5):149–150. https://doi.org/10.1016/j.micinf.2020.05.006.

37. Martel J., Ko Y.F., Young J.D., Ojcius D.M. Could nasal nitric oxide help to mitigate the severity of COVID-19? Microbes Infect. 2020;22(4–5):168–171. https://doi.org/10.1016/j.micinf.2020.05.002.

38. Wu R., Wang L., Kuo H.D., Shannar A., Peter R., Chou P.J. et al. An Update on Current Therapeutic Drugs Treating COVID-19. Curr Pharmacol Rep. 2020;1–15. https://doi.org/10.1007/s40495-020-00216-7.

39. Adusumilli N.C., Zhang D., Friedman J.M., Friedman A.J. Harnessing nitric oxide for preventing, limiting and treating the severe pulmonary consequences of COVID-19. Nitric Oxide. 2020;103:4–8. https://doi.org/10.1016/j.niox.2020.07.003.

40. Shanthanna H., Strand N.H., Provenzano D.A., Lobo C.A., Eldabe S., Bhatia A. et al. Caring for patients with pain during the COVID-19 pandemic: consensus recommendations from an international expert panel. Anaesthesia. 2020;75(7):935–944. https://doi.org/10.1111/anae.15076.


Review

For citations:


Alexandrova EA, Parshina EV, Borodacheva IV, Suslov AG, Beliakov KM, Yulin VS, Fomin SV. Possibilities of daytime anxolytics in the correction of residual neurological manifestations of COVID-19. Meditsinskiy sovet = Medical Council. 2021;(12):50-60. (In Russ.) https://doi.org/10.21518/2079-701X-2021-12-50-60

Views: 914


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)