Rational mucolytic therapy in respiratory diseases: clinical interpretation of pharmacological properties for informed choice
https://doi.org/10.21518/2079-701X-2021-12-181-191
Abstract
Respiratory diseases remain a common group of diseases in the practice of general physicians and pulmonologists. Currently, there are various treatment protocols for patients with respiratory diseases, where one of the pharmacological groups is mucolytic drugs. They affect the physical and chemical properties of sputum by splitting complex mucins, which leads to its liquefaction. Indications for use of drugs of this group are clinical conditions, in which there is a cough with thick, viscous, difficult to detach sputum. The article discusses the possibility of treating several respiratory diseases with mucolytic therapy, provides a comparative characteristic of drugs of this pharmacological group. The clinical and pharmacological effects of erdosteine are discussed in detail: mucolytic, antioxidant, anti-inflammatory, immunomodulatory. These properties of the drug are extremely important in clinical practice conditions, because in addition to the mucolytic properties themselves, the patient has many adverse processes due to inflammation. All this is associated with additional damaging factors regarding the tissues and may also indicate an increased risk of complications. Thus, the multipurpose effects of the mucolytic erdosteine in various respiratory tract diseases are presented. In addition to acute respiratory viral diseases, the clinical experience of using erdosteine in chronic obstructive pulmonary disease is discussed in detail. The most important indicator to assess the effectiveness of drugs used in this disease is the reduction in the number of exacerbations per year and the severity of the course of the exacerbation. The conclusions, which are given according to the results of a number of studies, determine significant advantages in the use of erdosteine as mucolytic therapy.
About the Authors
N. B. LazarevaRussian Federation
Dr. Sci. (Med.), Professor of the Department of Clinical Pharmacology and Propedeutics of Internal Diseases,
8, Bldg. 2, Trubetskaya St., Moscow, 119991
M. L. Maximov
Russian Federation
Dr. Sci. (Med.), Professor, Head of the Department of Clinical Pharmacology and Pharmacotherapy, 36, Butlerov St., Kazan, 420012;
professor of the Department of Pharmacology, 1, Ostrovityanov St., Moscow, 117997
I. V. Kukes
Russian Federation
Cand. Sci. (Med.), clinical pharmacologist, immunologist, 2, Bldg. 1, Malaya Kalitnikovskaya St., Moscow, 109147
References
1. Rogers D.F. Mucoactive agents for airway mucus hypersecretory diseases. Respir Care. 2007;52(9):1176–1193; discussion 1193–1197. Available at: https://pubmed.ncbi.nlm.nih.gov/17716385.
2. Lazareva N.B., Ermakova V.A. Expectorants: principles of choice and possibilities of modern herbal therapy. Meditsinskiy sovet = Medical Council. 2018;(15): 110–115. (In Russ.) https://doi.org/10.21518/2079-701X-2018-15-110-115.
3. Fahy J.V., Dickey B.F. Airway mucus function and dysfunction. N Engl J Med. 2010;363(23):2233–2247. https://doi.org/10.1056/NEJMra0910061.
4. Aldini G., Altomare A., Baron G., Vistoli G., Carini M., Borsani L, Sergio F. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018;52(7):751–762. https://doi.org/10.10 80/10715762.2018.1468564.
5. Ehre C., Rushton Z.L., Wang B., Hothem L.N., Morrison C.B., Fontana N.C. et al. An Improved Inhaled Mucolytic to Treat Airway Muco-obstructive Diseases. Am J Respir Crit Care Med. 2018;199(2):171–180. https://doi.org/10.1164/rccm.201802-0245OC.
6. Calzetta L., Matera M.G., Rogliani P., Cazzola M. Multifaceted activity of N-acetyll-cysteine in chronic obstructive pulmonary disease. Expert Rev Respir Med. 2018;12(8):693–708. https://doi.org/10.1080/17476348.2018.1495562.
7. Colombo B., Turconi P., Daffonchio L., Fedele G., Omini C., Cremaschi D. Stimulation of Cl- secretion by the mucoactive drug S-carboxymethylcysteine-lysine salt in the isolated rabbit trachea. Eur Respir J. 1994;7(9):1622–1628. https://doi.org/10.1183/09031936.94.07091622.
8. Hooper C., Calvert J. The role for S-carboxymethylcysteine (carbocisteine) in the management of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008;3(4):659–669. Available at: https://pubmed.ncbi.nlm.nih.gov/19281081.
9. Dal Negro R., Pozzi E., Cella S.G. Erdosteine: Drug exhibiting polypharmacy for the treatment of respiratory diseases. Pulm Pharmacol Ther. 2018;53:80–85. https://doi.org/10.1016/j.pupt.2018.10.005.
10. Cazzola M., Calzetta L., Page C., Rogliani P., Matera M.G. Thiol-Based Drugs in Pulmonary Medicine: Much More than Mucolytics. Trends Pharmacol Sci. 2019;40(7):452–463. https://doi.org/10.1016/j.tips.2019.04.015.
11. Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V. et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763. https://doi.org/10.1155/2017/8416763.
12. Lee I.T., Yang C.M. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol. 2012;84(5):581–590. https://doi.org/10.1016/j.bcp.2012.05.005.
13. Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–247. https://doi.org/10.1038/35041687.
14. Matera M.G., Calzetta L., Cazzola M. Oxidation pathway and exacerbations in COPD: the role of NAC. Expert Rev Respir Med. 2016;10(1):89–97. https://doi.org/10.1586/17476348.2016.1121105.
15. Cazzola M., Calzetta L., Page C., Rogliani P., Matera M.G. Impact of erdosteine on chronic bronchitis and COPD: A meta-analysis. Pulm Pharmacol Ther. 2018;48:185–194. https://doi.org/10.1016/j.pupt.2017.11.009.
16. Rushworth G.F., Megson I.L. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther. 2014;141(2):150–159. https://doi. org/10.1016/j.pharmthera.2013.09.006.
17. Boyaci H., Maral H., Turan G., Başyiğit I., Dillioğlugil M.O., Yildiz F. et al. Effects of erdosteine on bleomycin-induced lung fibrosis in rats. Mol Cell Biochem. 2006;281(1–2):129–137. https://doi.org/10.1007/s11010-006-0640-3.
18. Demiralay R., Gürsan N., Ozbilim G., Erdogan G., Demirci E. Comparison of the effects of erdosteine and N-acetylcysteine on apoptosis regulation in endotoxin-induced acute lung injury. J Appl Toxicol. 2006;26(4):301–308. https://doi.org/10.1002/jat.1133.
19. Miyake K., Kaise T., Hosoe H., Akuta K., Manabe H., Ohmori K. The effect of erdosteine and its active metabolite on reactive oxygen species production by inflammatory cells. Inflamm Res. 1999;48(4):205–209. https://doi.org/10.1007/s000110050447.
20. Gazzani G., Fregnan G.B., Vandoni G. In vitro protection by erdosteine against oxidative inactivation of alpha-1-antitrypsin by cigarette smoke. Respiration. 1989;55(2):113–118. https://doi.org/10.1159/000195713.
21. Braga P.C., Dal Sasso M., Culici M., Verducci P., Lo Verso R., Marabini L. Effect of metabolite I of erdosteine on the release of human neutrophil elastase. Pharmacology. 2006;77(3):150–154. https://doi.org/10.1159/000094379.
22. Marchioni C.F., Moretti M., Muratori M., Casadei M.C., Guerzoni P., Scuri R., Fregnan G.B. Effects of erdosteine on sputum biochemical and rheologic properties: pharmacokinetics in chronic obstructive lung disease. Lung. 1990;168(5):285–293. https://doi.org/10.1007/BF02719705.
23. Anayev E.KH. Mucolytic therapy: rational choice. Effektivnaya farmakoterapiya = Effective Pharmacotherapy. 2010;(27):25–28. (In Russ.) Available at: https://elibrary.ru/item.asp?id=21737264.
24. Geppe N.A., Snegotskaya M.N., Nikitenko A.A. Acetylcysteine for treatment of cough in children. Pediatriya. Prilozhenie k zhurnalu Consilium Medicum = Pediatrics. Consilium Medicum. 2007;(2):43–47. (In Russ.) Available at: https://medi.ru/info/10711.
25. Zaytseva O.V. Mucolytic drugs in the therapy of respiratory diseases in children: modern view of the problem. RMZh = RMJ. 2003;11(1):49–54. (In Russ.) Available at: https://www.rmj.ru/articles/pediatriya/Mukoliticheskie_preparaty_v_terapii_bolezney_organov_dyhaniya_u_detey_sovremennyy_vzglyad_na_problemu.
26. Korovina N.A., Zakharova I.N., Zaplatnikov A.L., Ovsyannikova YE.M. Antitussive and expectorant drugs in the practice of the pediatrician: a rational choice and tactics of use. 2nd ed. Moscow: Russian Medical Academy Professional Education; 2007. 48 p. (In Russ.).
27. Demiralay R., Gürsan N., Erdem H. The effects of erdosteine and N-acetylcysteine on apoptotic and antiapoptotic markers in pulmonary epithelial cells in sepsis. Eurasian J Med. 2013;45(3):167–175. https://doi.org/10.5152/eajm.2013.35.
28. Fraňová S., Kazimierová I., Pappová L., Molitorisová M., Jošková M., Šutovská M. The effect of erdosteine on airway defence mechanisms and inflammatory cytokines in the settings of allergic inflammation. Pulm Pharmacol Ther. 2019;54:60–67. https://doi.org/10.1016/j.pupt.2018.11.006.
29. Mohanty K.C., Thiappanna G., Singh V., Mancini C. Evaluation of efficacy and safety of erdosteine in patients affected by exacerbations of chronic bronchitis and receiving ciprofloxacin as basic treatment. J Clin Res. 2001;4:35–39. Available at: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-00385271/full.
30. Dal S.M., Bovio C., Culici M., Braga P.C. The combination of the SH metabolite of erdosteine (a mucoactive drug) and ciprofloxacin increases the inhibition of bacterial adhesiveness achieved by ciprofloxacin alone. Drugs Exp Clin Res. 2002;28(2–3):75–82. Available at: https://pubmed.ncbi.nlm.nih.gov/12224380.
31. Braga P.C., Dal Sasso M., Sala M.T., Gianelle V. Effects of erdosteine and its metabolites on bacterial adhesiveness. Arzneimittelforschung. 1999;49(4):344–350. https://doi.org/10.1055/s-0031-1300425.
32. Marchioni C.F., Polu J.M., Taytard A., Hanard T., Noseda G., Mancini C. Evaluation of efficacy and safety of erdosteine in patients affected by chronic bronchitis during an infective exacerbation phase and receiving amoxycillin as basic treatment (ECOBES, European Chronic Obstructive Bronchitis Erdosteine Study). Int J Clin Pharmacol Ther. 1995;33(11):612– 618. Available at: https://pubmed.ncbi.nlm.nih.gov/8688986.
33. Ricevuti G., Mazzone A., Uccelli E., Gazzani G., Fregnan G.B. Influence of erdosteine, a mucolytic agent, on amoxycillin penetration into sputum in patients with an infective exacerbation of chronic bronchitis. Thorax. 1988;43(8):585–590. https://doi.org/10.1136/thx.43.8.585.
34. Braga P.C., Zuccotti T., Dal Sasso M. Bacterial adhesiveness: effects of the SH metabolite of erdosteine (mucoactive drug) plus clarithromycin versus clarithromycin alone. Chemotherapy. 2001;47(3):208–214. https://doi.org/10.1159/000063223.
35. Dal Negro R., Visconti M., Trevisan F., Bertacco S., Micheletto C., Tognella S. Erdosteine enhances airway response to salbutamol in patients with mild-to-moderate COPD. Ther Adv Respir Dis. 2008;2(5):271–277. https://doi.org/10.1177/1753465808096109.
36. Yunus F., Mangunnegoro H., Rahmawati I., Tjandrawinata R.R., Nofiarny D. The Role of Erdosteine in Reducing the Need for Bronchodilators During Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Journal of the Indonesian Medical Association. 2007;2007:337–345. Available at: https://scholar.ui.ac.id/en/publications/the-role-of-erdosteine-in-reducingthe-need-for-bronchodilators-d.
37. Avdeyev S.N. Value of mucoactive drugs in COPD therapy. RMZh. Meditsinskoye obozreniye = Russian Medical Inquiry. 2015;(4):206–211. (In Russ.) Available at: https://www.rmj.ru/articles/obshchie-stati/Znachenie_mukoaktivnyh_preparatov_v_terapii_HOBL.
38. Moretti M., Bottrighi P., Dallari R., Da Porto R., Dolcetti A., Grandi P. et al. The effect of long-term treatment with erdosteine on chronic obstructive pulmonary disease: the EQUALIFE Study. Drugs Exp Clin Res. 2004;30(4): 143–152. Available at: https://pubmed.ncbi.nlm.nih.gov/15553660.
39. Rogliani P., Matera M.G., Page C., Puxeddu E., Cazzola M., Calzetta L. Efficacy and safety profile of mucolytic/antioxidant agents in chronic obstructive pulmonary disease: a comparative analysis across erdosteine, carbocysteine, and N-acetylcysteine. Respir Res. 2019;20(1):104. https://doi.org/10.1186/s12931-019-1078-y.
40. Cazzola M., Calzetta L., Puxeddu E., Matera M., Rogliani P. Efficacy of erdosteine, carbocysteine, and N-acetylcysteine in COPD: a comparative analysis. Eur Resp J. 2019;54(63 Suppl.):PA729. https://doi.org/10.1183/13993003.congress-2019.PA729.
41. Hoza J., Salzman R., Starek I., Schalek P., Kellnerova R. Efficacy and safety of erdosteine in the treatment of chronic rhinosinusitis with nasal polyposis – a pilot study. Rhinology. 2013;51(4):323–327. https://doi.org/10.4193/Rhin13.039.
42. Santus P., Tursi F., Croce G., Di Simone C., Frassanito F., Gaboardi P. et al. Changes in quality of life and dyspnoea after hospitalization in COVID-19 patients discharged at home. Multidiscip Respir Med. 2020;15(1):713. https://doi.org/10.4081/mrm.2020.713.
Review
For citations:
Lazareva NB, Maximov ML, Kukes IV. Rational mucolytic therapy in respiratory diseases: clinical interpretation of pharmacological properties for informed choice. Meditsinskiy sovet = Medical Council. 2021;(12):181-191. (In Russ.) https://doi.org/10.21518/2079-701X-2021-12-181-191