Preview

Meditsinskiy sovet = Medical Council

Advanced search

Modern opportunities of pharmacological effect on gut microbiome and motor activity

https://doi.org/10.21518/2079-701X-2021-12-200-208

Abstract

Currently, lactulose is known to most as a laxative that has a hyperosmotic effect, stimulating intestinal peristalsis. The drug has long established itself as a safe and effective medicine. Lactulose is one of the few drugs that is approved for use in pregnant women and children under 6 months of age with functional constipation. The prebiotic properties of lactulose were discovered in 1957. After research, it was found that it promotes the growth of beneficial bacteria, such as bifidobacteria and lactobacilli. In addition to being used as an effective weak and prebiotic agent, lactulose has been successfully used since 1966 for the treatment of hepatic encephalopathy. The mechanism of action of the drug is that it prevents the absorption of excess ammonia, which is formed in the large intestine, through the hydrolysis of protein and urea by the intestinal microflora. Lactulose, which has a wide range of effects on nitrogen metabolism by the intestinal microflora, affects not only ammonia, but also other bacterial toxins as a result of the studies that have demonstrated the reliable effectiveness of the drug, the world’s leading professional communities have included lactulose in their recommendations as the drug of choice for the treatment of patients with hepatic encephalopathy at any stage of the disease. The article presents current data on the effectiveness and safety of the use of lactulose in various diseases. In addition, attention is paid to such a concept as microbiota. Its functions and influence on the human body are described. 

About the Authors

V. N. Drozdov
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Dr. Sci. (Med.), Professor, Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases,

8, Bldg. 2, Trubetskaya St., Moscow, 119991



E. V. Shikh
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Dr. Sci. (Med.), Chair of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, 

8, Bldg. 2, Trubetskaya St., Moscow, 119991



A. A. Astapovskiy
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Graduate student of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases,

8, Bldg. 2, Trubetskaya St., Moscow, 119991



S. Yu. Serebrova
Sechenov First Moscow State Medical University (Sechenov University); Scientific Centre of Expertise of Medical Devices
Russian Federation

Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, 8, Bldg. 2, Trubetskaya St., Moscow, 119991;

Dr. Sci. (Med.), Chief Researcher, 8, Bldg. 2, Petrovskiy Boulevard, Moscow, 127051



I. A. Komissarenko
Yevdokimov Moscow State University of Medicine and Dentistry
Russian Federation

Dr. Sci. (Med), Professor of the Department of Polyclinic Therapy,

20, Bldg. 1, Delegatskaya St., Moscow, 127473



References

1. Pickard J., Zeng M., Caruso R., Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70–89. https://doi.org/10.1111/imr.12567.

2. Aagaard K., Ma J., Antony K., Ganu R., Petrosino J., Versalovic J. The Placenta Harbors a Unique Microbiome. Sci Transl Med. 2014;6(237):237ra65. https://doi.org/10.1126/scitranslmed.3008599.

3. Rodríguez J., Murphy K., Stanton C., Ross R.P., Kober O.I., Juge N. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050. https://doi.org/10.3402/mehd.v26.26050.

4. Bäckhed F., Programming of Host Metabolism by the Gut Microbiota. Ann Nutr Metab. 2011;58(2 Suppl.):44–52. https://doi.org/10.1159/000328042.

5. Palmer C., Bik E., DiGiulio D., Relman D.A., Brown P.O. Development of the Human Infant Intestinal Microbiota. PLoS Biol. 2007;5(7):e177. https://doi.org/10.1371/journal.pbio.0050177.

6. Koenig J., Spor A., Scalfone N., Fricker A., Stombaugh J., Knight R. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2010;108(1 Suppl.):4578–4585. https://doi. org/10.1073/pnas.1000081107.

7. Ley R., Hamady M., Lozupone C., Turnbaugh P.J., Ramey R.R., Bircher J.S. et al. Evolution of Mammals and Their Gut Microbes. 2008. Science;320(5883):1647–1651. https://doi.org/10.1126/science.1155725.

8. Andoh A. Physiological Role of Gut Microbiota for Maintaining Human Health. Digestion. 2016;93(3):176–181. https://doi.org/10.1159/000444066.

9. Forgie A.J., Fouhse J.M., Willing B.P. Diet-Microbe-Host Interactions That Affect Gut Mucosal Integrity and Infection Resistance. Front Immunol. 2019;10:1802. https://doi.org/10.3389/fimmu.2019.01802.

10. Sekirov I., Russell S., Antunes L., Finlay B.B. Gut Microbiota in Health and Disease. Physiol Rev. 2010;90(3):859–904. https://doi.org/10.1152/physrev.00045.2009.

11. O’Hara A., Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688–693. https://doi.org/10.1038/sj.embor.7400731.

12. LeBlanc J.G., Milani C., de Giori G., Sesma F., van Sinderen D., Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160–168. https://doi.org/10.1016/j.copbio.2012.08.005.

13. Pompei A., Cordisco L., Amaretti A., Zanoni S., Matteuzzi D., Rossi M. Folate Production by Bifidobacteria as a Potential Probiotic Property. Appl Environ Microbiol. 2007;73(1):179–185. https://doi.org/10.1128/AEM.01763-06.

14. Hill M.J. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev. 1997;6(1 Suppl.):S43–S45. https://doi.org/10.1097/00008469-199703001-00009.

15. Palau-Rodriguez M., Tulipani S., Queipo-Ortuño M.I., Urpi-Sarda M., Tinahones F.J., Andres-Lacueva C. Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes. Front Microbiol. 2015;6:1151. https://doi.org/10.3389/fmicb.2015.01151.

16. Marchesi J.R., Adams D.Y., Fava F., Hermes G.D., Hirschfield G.M., Hold G. et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):330–339. https://doi.org/10.1136/gutjnl-2015-309990.

17. Sun M., Wu W., Liu Z., Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol. 2017;52(1):1–8. https://doi.org/10.1007/s00535-016-1242-9.

18. Morrison D., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082.

19. Corrêa-Oliveira R., Fachi J.L., Vieira A., Sato F.T., Vinolo M.A.R. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016;5(4):e73. https://doi.org/10.1038/cti.2016.17.

20. Natividad J., Verdu E. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacol Res. 2013;69(1):42–51. https://doi.org/10.1016/j.phrs.2012.10.007.

21. Swanson P., Kumar A., Samarin S., Vijay-Kumar M., Kundu K., Murthy N. et al. Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc Natl Acad Sci USA. 2011;108(21):8803–8808. https://doi.org/10.1073/pnas.1010042108.

22. Reunanen J., Kainulainen V., Huuskonen L., Ottman H.N., Belzer C., Huhtinen H.L. et al. Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer. Appl Environ Microbiol. 2015;81(11):3655–3662. https://doi.org/10.1128/AEM.04050-14.

23. Chen H., Yang J., Zhang M., Zhou Y.K., Shen T.Y., Chu Z.X. et al. Lactobacillus plantarum ameliorates colonic epithelial barrier dysfunction by modulating the apical junctional complex and PepT1 in IL-10 knockout mice. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1287–G1297. https://doi.org/10.1152/ajpgi.00196.2010.

24. Falk P., Hooper L., Midtvedt T., Gordon J.I. Creating and Maintaining the Gastrointestinal Ecosystem: What We Know and Need To Know from Gnotobiology. Microbiol Mol Biol Rev. 1998:62(4):1157–1170. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC98942/

25. Bouskra D., Brézillon C., Bérard M., Werts C., Varona R., Boneca I.G., Eberl G. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456(7221):507–510. https://doi.org/10.1038/nature07450.

26. Hapfelmeier S., Lawson M., Slack E., Kirundi J.K., Stoel M., Heikenwalder M. et al. Reversible Microbial Colonization of Germ-Free Mice Reveals the Dynamics of IgA Immune Responses. Science. 2010;328(5986):1705– 1709. https://doi.org/10.1126/science.1188454.

27. Shanahan F. The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol. 2002:16(6):915–931. https://doi.org/10.1053/bega.2002.0342.

28. Littman D.R., Rudensky A.Y. Th17 and Regulatory T Cells in Mediating and Restraining Inflammation. Cell. 2010;140(6):845–858. https://doi.org/10.1016/j.cell.2010.02.021.

29. Wu H., Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4–14. https://doi.org/10.4161/gmic.19320.

30. Bäumler A., Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535(7610):85–93. https://doi.org/10.1038/nature18849.

31. Kamada N., Kim Y., Sham H., Vallance B.A., Puente J.L., Martens E.C., Núñez G. Regulated Virulence Controls the Ability of a Pathogen to Compete with the Gut Microbiota. Science. 2012;336(6086):1325–1329. https://doi.org/10.1126/science.1222195.

32. Huang T., Zhang X., Pan J., Su X., Jin X., Guan X. Purification and Characterization of a Novel Cold Shock Protein-Like Bacteriocin Synthesized by Bacillus thuringiensis. Sci Rep. 2016;6:35560. https://doi.org/10.1038/srep35560.

33. Ferreyra J., Wu K., Hryckowian A., Bouley D.M., Weimer B.C., Sonnenburg J.L. Gut Microbiota-Produced Succinate Promotes C. difficile Infection after Antibiotic Treatment or Motility Disturbance. Cell Host Microbe. 2014;16(6):770–777. https://doi.org/10.1016/j.chom.2014.11.003.

34. Barbara G., Stanghellini V., Brandi G., Cremon C., Di Nardo G., De Giorgio R., Corinaldesi R. Interactions Between Commensal Bacteria and Gut Sensorimotor Function in Health and Disease. Am J Gastroenterol. 2005;100(11):2560–2568. https://doi.org/10.1111/j.1572-0241.2005.00230.x.

35. Wedlake L., A’hern R., Russell D., Thomas K., Walters J.R., Andreyev H.J. Systematic review: the prevalence of idiopathic bile acid malabsorption as diagnosed by SeHCAT scanning in patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther. 2009;30(7):707–717. https://doi.org/10.1111/j.1365-2036.2009.04081.x.

36. Pimentel M., Lin H., Enayati P., van den Burg B., Lee H.R., Chen J.H. et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am J Physiol Gastrointes Liver Physiol. 2006;290(6):G1089–G1095. https://doi.org/10.1152/ajpgi.00574.2004.

37. Lamine F., Fioramonti J., Bueno L., Nepveu F., Cauquil E., Lobysheva I. et al. Nitric oxide released by lactobacillus farciminis improvesTNBS‐induced colitis in rats. Scand J Gastroenterol. 2004;39(1):37–45. https://doi.org/10.1080/00365520310007152.

38. Kuchumova S.Yu., Poluektova Ye.A., Sheptulin A.A., Ivashkin V.T. Physiological value of intestinal microflora. Rossiyskiy zhurnal gastroehnterologii, gepatologii, koloproktologii = Russian Journal of Gastroenterology, Hepatology, Сoloproctology. 2011;21(5):17–27. (In Russ.) Available at: http://old-gastro-j.ru/article/371-fiziologicheskoe-znachenie-kishechnoymikrofloryi/show/full/

39. Manichanh C., Rigottier-Gois L., Bonnaud E., Gloux K., Pelletier E., Frangeul L. et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–211. https://doi.org/10.1136/gut.2005.073817.

40. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66.

41. Manichanh C., Rigottier-Gois L., Bonnaud E., Gloux K., Pelletier E., Frangeul L., Nalin R. et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–211. https://doi.org/10.1136/gut.2005.073817.

42. Elkington S.G. Lactulose. Gut. 1970;11(12):1043–1048. https://doi. org/10.1136/gut.11.12.1043.

43. Montgomery E., Hudson C. Relations between rotatory power and structure in the sugar group. XXVII. Synthesis of a new disaccharide ketose (lactulose) from lactose1. J Am Chem Soc. 1930;52(5):2101–2106. https://doi.org/10.1021/ja01368a060.

44. Mayerhofer F., Petuely F. Untersuchungen zur Regulation der Darmtagheit des Erwachsenen mit Hilfe der Lactulose (Bifidus-Faktor). Wien Klin Wochenschr. 1959;71:865–869.

45. Andrews C., Storr M. The pathophysiology of chronic constipation. Can J Gastroenterol. 2011;25(B Suppl.):16B–21B. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206564/

46. Wald A., Scarpignato C., Müller-Lissner S., Kamm M.A., Hinkel U., Helfrich I. еt al. A multinational survey of prevalence and patterns of laxative use among adults with self-defined constipation. Alimiment Pharmacol Ther. 2008;28(7):917–930. https://doi.org/10.1111/j.1365-2036.2008.03806.x.

47. Bondarenko V.M., Maksimov V.I., Rodoman V.E. Lactulose and colon microecology. Zhurnal mikrobiologii, èpidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology. 1998;(5):101–107. (In Russ.) Available at: http://eport.fesmu.ru/eLib/Article.aspx?id=2521.

48. Sanchez M.I., Bercik P. Epidemiology and burden of chronic constipation. Can J Gastroenterol. 2011;25(B Suppl.):11B–15B. https://doi.org/10.1155/2011/974573.

49. Ivashkin V.T., Mayev I.V., Sheptulin A.A., Trukhmanov A.S., Poluektova Y.A., Baranskaya Y.K. et al. Diagnostics and treatment of chronic constipation in adults: clinical guidelines of the Russian gastroenterological association. Rossiyskiy zhurnal gastroehnterologii, gepatologii, koloproktologii = Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2017;27(3):75–83. (In Russ.) Available at: http://old-gastro-j.ru/article/1168-h2-klinicheskie-rekomendatsii-rossiyskoygastroenterologicheskoy-assotsiatsii-po-diagnostike-i-/

50. Rasquin-Weber A., Hyman P.E., Cucchiara S., Fleisherd D.R., Hyamse J.S., Millaf P.J., Staianog A. Childhood functional gastrointestinal disorders. Gut. 1999;45(2 Suppl.):II60–II68. https://doi.org/10.1136/gut.45.2008.ii60.

51. Cao Y., Liu S. Lactulose for the treatment of Chinese children with chronic constipation. Medicine (Baltimore). 2018;97(52):e13794. https://doi.org/10.1097/MD.0000000000013794.

52. Bradley C., Kennedy C., Turcea A., Rao S.S., Nygaard I.E. Constipation in Pregnancy: prevalence, symptoms, and risk factors. Obstet Gynecol. 2007;110(6):1351–1357. https://doi.org/10.1097/01.aog.0000295723.94624.b1.

53. Cullen G., O’Donoghue D. Constipation and pregnancy. Best Pract Res Clin Gastroenterol. 2007;21(5):807–818. https://doi.org/10.1016/j.bpg.2007.05.005.

54. Thukral C., Wolf J.L. Therapy insight: drugs for gastrointestinal disorders in pregnant women. Nat Clin Pract Gastroenterol Hepatol. 2006;3(5):256– 266. https://doi.org/10.1038/ncpgasthep0452.

55. Sokur T.N., Dubrovina N.N. Use of lactulose in the treatment of constipation during pregnancy and postpartum. Akusherstvo i ginekologiya = Obstetrics and Gynecology. 2013;(8):103–106. (In Russ.) Available at: https://lib.medvestnik.ru/articles/Primenenie-laktulozy-pri-lecheniizaporov-u-beremennyh-jenshin-i-v-poslerodovom-periode.html.

56. Swanson K.S., Gibson G.R., Hutkins R., Reimer R.A., Reid G., Verbeke K. et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2020;17(11):687–701. https://doi.org/10.1038/s41575-020-0344-2.

57. Petuely F. Der bifidusfaktor. Dtsch Med Wochensch. 1957;82(46):1957– 1960. (In German) https://doi.org/10.1055/s-0028-1117025.

58. Ruszkowski J., Witkowski J. Lactulose: Patient- and dose-dependent prebiotic properties in humans. Anaerobe. 2019;59:100–106. https://doi.org/10.1016/j.anaerobe.2019.06.002.

59. Tayebi-Khosroshahi H., Habibzadeh A., Niknafs B., Ghotaslou R., Sefidan F.Y., Ghojazadeh M. et al. The effect of lactulose supplementation on fecal microflora of patients with chronic kidney disease; a randomized clinical trial. J Renal Inj Prev. 2016;5(3):162–167. https://doi.org/10.15171/jrip.2016.34.

60. Sakai Y., Seki N., Hamano K., Ochi H., Abe F., Masuda K., Iino H. Prebiotic effect of two grams of lactulose in healthy Japanese women: a randomised, double-blind, placebo-controlled crossover trial. Benef Microbes. 2019;10(6):629–639. https://doi.org/10.3920/BM2018.0174.

61. American Association for the Study of Liver Diseases; European Association for the Study of the Liver. Hepatic Encephalopathy in Chronic Liver Disease: 2014 Practice Guideline by the European Association for the Study of the Liver and the American Association for the Study of Liver Diseases. J Hepatol. 2014;61(3):642–659. https://doi.org/10.1016/j.jhep.2014.05.042.

62. Elwir S., Rahimi R.S. Hepatic encephalopathy: an update on the pathophysiology and therapeutic options. J Clin Transl Hepatol. 2017;5(2):142– 151. https://doi.org/10.14218/JCTH.2016.00069.

63. Neff G.W., Kemmer N., Duncan C., Alsina A. Update on the management of cirrhosis – focus on cost-effective preventative strategies. Clinicoecon Outcomes Res. 2013;5:143–152. https://doi.org/10.2147/CEOR.S30675.

64. Gluud L., Vilstrup H., Morgan M. Nonabsorbable disaccharides for hepatic encephalopathy: A systematic review and meta-analysis. Hepatology. 2016;64(3):908–922. https://doi.org/10.1002/hep.28598.


Review

For citations:


Drozdov VN, Shikh EV, Astapovskiy AA, Serebrova SY, Komissarenko IA. Modern opportunities of pharmacological effect on gut microbiome and motor activity. Meditsinskiy sovet = Medical Council. 2021;(12):200-208. (In Russ.) https://doi.org/10.21518/2079-701X-2021-12-200-208

Views: 540


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)