Preview

Meditsinskiy sovet = Medical Council

Advanced search

Prediabetes: challenges and opportunities

https://doi.org/10.21518/2079-701X-2021-12-220-227

Abstract

In the world, the number of patients with carbohydrate metabolism disorders is steadily growing. Over the past 10 years, the number of patients with diabetes mellitus in the world has more than doubled. Moreover, there is not only an increase in the number of patients with diabetes mellitus, predominantly type 2 diabetes, but also with prediabetes. The term «prediabetes» means impaired glucose tolerance and impaired fasting glycemia. To date, it is obvious that the development of prediabetes lead not only to the higher risk of diabetes mellitus in the future, but also of cardiovascular diseases. Factors that increase the risk of cardiovascular events in patients with prediabetes includeare the following: insulin resistance, accompanied by arterial hypertension and dyslipidemia, and postprandial hyperglycemia. Therefore, it is very important to timely identify patients from the risk group, diagnose and treat carbohydrate metabolism disorders already at the stage of prediabetes. Also it is very important to identify the patients from the risk group, diagnose and treat carbohydrate metabolism disorders at the stage of prediabetes. Treatment of patients with prediabetes implies, first of all, lifestyle modification (moderate hypocaloric nutrition with predominant restriction of fats and simple carbohydrates and regular physical activity of moderate intensity) in order to reduce weight. If lifestyle changes are ineffective, drug therapy may be prescribed. The article discusses the studies conducted to assess the effectiveness of lifestyle modification, as well as various options for antihyperglycemic therapy (metformin, glucagon-like peptide receptor agonists, alpha-glucosidase inhibitors, orlistat) for the treatment of patients with prediabetes. It also provides data on long-term follow-up of patients with prediabetes who received different treatment options. 

About the Authors

T. B. Morgunova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Cand. Sci. (Med.), Associate Professor, Department of Endocrinology No. 1, Sklifosovsky Institute of Clinical Medicine,

8, Bldg. 2, Trubetskaya St., Moscow, 119991



I. V. Glinkina
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Cand. Sci. (Med.), Associate Professor, Еndocrinologist, Department of Endocrinology No. 1, Sklifosovsky Institute of Clinical Medicine, 

8, Bldg. 2, Trubetskaya St., Moscow, 119991



V. V. Fadeev
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Corr. Member RAS, Dr. Sci. (Med.), Professor, Chair of the Department of Endocrinology No. 1, Sklifosovsky Institute of Clinical Medicine, 

8, Bldg. 2, Trubetskaya St., Moscow, 119991



References

1. Dedov I.I., Shestakova M.V., Mayorov A.Y. (eds.) Standards of Specialized Diabetes Care. 9th ed. Sakharnyy diabet = Diabetes Mellitus. 2019;22(1S1): 1–144. (In Russ.) https://doi.org/10.14341/DM221S1.

2. Dedov I., Shestakova M., Benedetti M.M., Simon D., Pakhomov I., Galstyan G. Prevalence of Type 2 Diabetes Mellitus (T2DM) in the Adult Russian Population (NATION Study). Diabetes Res Clin Pract. 2016;115:90−95. https://doi.org/10.1016/j.diabres.2016.02.010.

3. Shestakova E.A., Lunina E.Y., Galstyan G.R., Shestakova M.V., Dedov I.I. Type 2 Diabetes and Prediabetes Prevalence in Patients with Different Risk Factor Combinations in the NATION study. Sakharnyy diabet = Diabetes Mellitus. 2020;23(1):4–11. (In Russ.) https://doi.org/10.14341/DM12286.

4. Dedov I.I., Shestakova M.V. (eds.). Diabetes Mellitus: Diagnosis, Treatment, Prevention. Moscow: Medical Information Agency; 2011. 808 p. (In Russ.) Available at: https://www.euni.cz/files/fileUploader/download/dia_ru/Textbook_Hibrid%20diabetic%20forms.pdf.

5. Garber A.J., Handelsman Y., Einhorn D., Bergman D.A., Bloomgarden Z.T., Fonseca V. et al. Diagnosis and Management of Prediabetes in the Continuum of Hyperglycemia: When Do the Risks of Diabetes Begin? A Consensus Statement from the American College of Endocrinology and the American Association of Clinical Endocrinologists. Endocr Pract. 2008;14(7):933–946. https://doi.org/10.4158/EP.14.7.933.

6. Kanat M., DeFronzo R.A., Abdul-Ghani M. Treatment of Prediabetes. World J Diabetes. 2015;6(12):1207–1222. https://doi.org/10.4239/wjd.v6.i12.1207.

7. Kanat M., Mari A., Norton L., Winnier D., DeFronzo R.A., Jenkinson Ch., Abdul-Ghani M.A. Distinct B-Cell Defects in Impaired Fasting Glucose and Impaired Glucose Tolerance. Diabetes. 2012;61(2):447–453. https://doi.org/10.2337/db11-0995.

8. Abdul-Ghani M., DeFronzo R.A., Jayyousi A. Prediabetes and Risk of Diabetes and Associated Complications: Impaired Fasting Glucose versus Impaired Glucose Tolerance: Does It Matter? Curr Opin Clin Nutr Metab Care. 2016;19(5):394–399. https://doi.org/10.1097/MCO.0000000000000307.

9. Tuomilehto J., Lindström J., Eriksson J.G., Valle T.T., Hämäläinen H., IlanneParikka P. et al. Prevention of Type 2 Diabetes Mellitus by Changes in Lifestyle among Subjects with Impaired Glucose Tolerance. N Engl J Med. 2001;344(18):1343–1350. https://doi.org/10.1056/NEJM200105033441801.

10. Knowler W.C., Barret-Connor E., Fowler S.E., Hamman R.F., Lachin J.M., Walker E.A., Nathan D.M. Reduction in the Incidence of type 2 Diabetes with Lifestyle Intervention or Metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.

11. Ramachandran A., Snehalatha C., Mary S., Mukesh B., Bhaskar A.D., Vijay V. The Indian Diabetes Prevention Programme Shows That Lifestyle Modification and Metformin Prevent Type 2 Diabetes in Asian Indian Subjects with Impaired Glucose Tolerance (IDPP-1). Diabetologia. 2006;49(2):289–297. https://doi.org/10.1007/s00125-005-0097-z.

12. Diabetes Prevention Program Research Group. Long-Term Effects of Lifestyle Intervention or Metformin on Diabetes Development and Microvascular Complications over 15-Year Follow-Up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3(11):866–875. https://doi.org/10.1016/S2213-8587(15)00291-0.

13. Diabetes Prevention Program Research Group. Long-Term Safety, Tolerability, and Weight Loss Associated with Metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2012;35(4):731–737. https://doi.org/10.2337/dc11-1299.

14. DeFronzo R.A. From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes. 2009;58(4):773–795. https://doi.org/10.2337/db09-9028.

15. DeFronzo R.A. Insulin Resistance, Lipotoxicity, Type 2 Diabetes and Atherosclerosis: the Missing Links. The Claude Bernard Lecture 2009. Diabetologia. 2010;53(7):1270–1287. https://doi.org/10.1007/s00125-010-1684-1.

16. Yki-Järvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–1118. https://doi.org/10.1056/NEJMra041001.

17. Spiegelman B.M. PPAR-Gamma: Adipogenic Regulator and Thiazolidinedione Receptor. Diabetes. 1998;47(4):507–514. https://doi.org/10.2337/diabetes.47.4.507.

18. Gastaldelli A., Ferrannini E., Miyazaki Y., Matsuda M., Mari A., DeFronzo R.A. Thiazolidinediones Improve Beta-Cell Function in Type 2 Diabetic Patients. Am J Physiol Endocrinol Metab. 2007;292(3):E871–E883. https://doi.org/10.1152/ajpendo.00551.2006.

19. DeFronzo R.A., Tripathy D., Schwenke D.C., Banerji M.A., Bray G.A., Buchanan T.A. et al. Pioglitazone for Diabetes Prevention in Impaired Glucose Tolerance. N Engl J Med. 2011;364(12):1104–1115. https://doi.org/10.1056/NEJMoa1010949.

20. Espinoza S.E., Wang C.P., Tripathy D., Clement S.C., Schwenke D.C., Banerji M.A. et al. Pioglitazone Is Equally Effective for Diabetes Prevention in Older versus Younger Adults with Impaired Glucose Tolerance. AGE. 2016;38(5–6):485–493. https://doi.org/10.1007/s11357-016-9946-6.

21. Tripathy D., Schwenke D.C., Banerji M.A., Bray G.A., Buchanan T.A., Clement S.C. et al. Diabetes Incidence and Glucose Tolerance after Termination of Pioglitazone Therapy: Results from ACT NOW. Clin Endocrinol Metab. 2016;101(5):2056–2062. https://doi.org/10.1210/jc.2015-4202.

22. Berkowitz K., Peters R., Kjos S.L., Goico J., Marroquin A., Dunn M.E. et al. Effect of Troglitazone on Insulin Sensitivity and Pancreatic Beta-Cell Function in Women at High Risk for NIDDM. Diabetes. 1996;45(11):1572–1579. https://doi.org/10.2337/diab.45.11.1572.

23. Xiang A.H., Peters R.K., Kjos S.L., Marroquin A., Goico J., Ochoa C. et al. Effect of Pioglitazone on Pancreatic Beta-Cell Function and Diabetes Risk in Hispanic Women with Prior Gestational Diabetes. Diabetes. 2006;55(2):517– 522. https://doi.org/10.2337/diabetes.55.02.06.db05-1066.

24. Buchanan T.A., Xiang A.H., Peters R.K., Kjos S.L., Marroquin A., Goico J. et al. Preservation of Pancreatic Beta-Cell Function and Prevention of Type 2 Diabetes by Pharmacological Treatment of Insulin Resistance in High-Risk Hispanic Women. Diabetes. 2002;51(90:2796–2803. https://doi.org/10.2337/diabetes.51.9.2796.

25. Torgerson J.S., Hauptman J., Boldrin M.N., Sjöström L. XENical in the Prevention of Diabetes in Obese Subjects (XENDOS) Study: A Randomized Study of Orlistat as an Adjunct to Lifestyle Changes for the Prevention of Type 2 Diabetes in Obese Patients. Diabetes Care. 2004;27(1):155–161. https://doi.org/10.2337/diacare.27.1.155.

26. Chiasson J.L., Josse R.G., Gomis R., Hanefeld M., Karasik A., Laakso M. Acarbose for Prevention of Type 2 Diabetes Mellitus: the STOP-NIDDM Randomised Trial. Lancet. 2002;359(9323):2072–2077. https://doi.org/10.1016/S0140-6736(02)08905-5.

27. Kawamori R., Tajima N., Iwamoto Y., Kashiwagi A., Shimamoto K., Kaku K. Voglibose for Prevention of Type 2 Diabetes Mellitus: A Randomised, DoubleBlind Trial in Japanese Individuals with Impaired Glucose Tolerance. Lancet. 2009;373(9675):1607–1614. https://doi.org/10.1016/S0140-6736(09)60222-1.

28. DeFronzo R.A., Abdul-Ghani M. Type 2 Diabetes Can Be Prevented with Early Pharmacological Intervention. Diabetes Care. 2011;34(2 Suppl):S202–S209. https://doi.org/10.2337/dc11-s221.

29. Slack E., Hapfelmeier S., Stecher B., Velykoredko Y., Stoel M., Lawson M.A. et al. Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism. Science. 2009;325(5940):617–620. https://doi.org/10.1126/science.1172747.

30. Le Roux C.W., Astrup A., Fujioka K., Greenway F., Lau D., Gaal L.C. et al. 3 Years of Liraglutide versus Placebo for Type 2 Diabetes Risk Reduction and Weight Management in Individuals with Prediabetes: A Randomised, Double-Blind Trial. Lancet. 2017;389(10077):1399–1409. https://doi.org/10.1016/S0140-6736(17)30069-7.

31. Armato J.P., DeFronzo R.A., Abdul-Ghani M., Ruby R.J. Successful Treatment of Prediabetes in Clinical Practice Using Physiological Assessment (STOP DIABETES). Lancet Diabetes Endocrinol. 2018;6(10):781–789. https://doi.org/10.1016/S2213-8587(18)30234-1.

32. Abdul-Ghani M.A., Stern M.P., Lyssenko V., Tuomi T., Groop L., Defronzo R.A. Minimal Contribution of Fasting Hyperglycemia to the Incidence of Type 2 Diabetes in Subjects with Normal 2-h Plasma Glucose. Diabetes Care. 2010;33(3):557–561. https://doi.org/10.2337/dc09-1145.

33. Cowie C.C., Harris M.I., Silverman R.E., Johnson E.W., Rust K.F. Effect of Multiple Risk Factors on Differences between Blacks and Whites in the Prevalence of Non-Insulin-Dependent Diabetes Mellitus in the United States. Am J Epidemiol 1993;137(7):719–732. https://doi.org/10.1093/oxfordjournals.aje.a116732.

34. Jarrett R.J., Keen H., McCartney P. The Whitehall Study: ten year follow-up report on men with impaired glucose tolerance with reference to worsening to diabetes and predictors of death. Diabet Med. 1984;1(4):279–283. https://doi.org/10.1111/j.1464-5491.1984.tb01973.x.

35. Eriksson K.F., Lindgärde F. Prevention of Type 2 (Non-Insulindependent) Diabetes Mellitus by Diet and Physical Exercise. The 6-Year Malmö Feasibility Study. Diabetologia. 1991;34(12):891–898. https://doi.org/10.1007/BF00400196.

36. Ryder R.E.J. Real-World Diabetes Prevention: From Theory to Practice. Lancet Diabetes Endocrinol. 2018;6(10):756–757. https://doi.org/10.1016/S2213-8587(18)30267-5.

37. Gerstein H.C., Yusuf S., Bosch J., Pogue J., Sheridan P., Dinccag N. et al. Effect of Rosiglitazone on the Frequency of Diabetes in Patients with Impaired Glucose Tolerance or Impaired Fasting Glucose: A Randomised Controlled Trial. Lancet. 2006;368(9541):1096–1105. https://doi.org/10.1016/S0140-6736(06)69420-8.

38. Knowler W.C., Hamman R.F., Edelstein S.L., Barrett-Connor E., Ehrmann D.A., Walker E.A. Prevention of Type 2 Diabetes with Troglitazone in the Diabetes Prevention Program. Diabetes. 2005;54(4):1150–1156. https://doi.org/10.2337/diabetes.54.4.1150.

39. Ferrannini E., Gastaldelli A., Miyazaki Y., Matsuda M., Mari A., DeFronzo R.A. BetaCell Function in Subjects Spanning the Range from Normal Glucose Tolerance to Overt Diabetes: A New Analysis. J Clin Endocrinol Metab. 2005;90(1):493–500. https://doi.org/10.1210/jc.2004-1133.

40. Abdul-Ghani M.A., Tripathy D., DeFronzo R.A. Contributions of Beta-Cell Dysfunction and Insulin Resistance to the Pathogenesis of Impaired Glucose Tolerance and Impaired Fasting Glucose. Diabetes Care. 2006;29(5):1130–1139. https://doi.org/10.2337/diacare.2951130.

41. Abdul-Ghani M.A., Jenkinson C.P., Richardson D.K., Tripathy D., DeFronzo R.A. Insulin Secretion and Action in Subjects with Impaired Fasting Glucose and Impaired Glucose Tolerance: Results from the Veterans Administration Genetic Epidemiology Study. Diabetes. 2006;55(5):1430–1435. https://doi.org/10.2337/db05-1200.

42. Weyer C., Tataranni P.A., Bogardus C., Pratley R.E. Insulin Resistance and Insulin Secretory Dysfunction Are Independent Predictors of Worsening of Glucose Tolerance during Each Stage of Type 2 Diabetes Development. Diabetes Care. 2001;24(1):89–94. https://doi.org/10.2337/diacare.24.1.89.

43. Abdul-Ghani M.A., Lyssenko V., Tuomi T., DeFronzo R.A., Groop L. Fasting versus Postload Plasma Glucose Concentration and the Risk for Future Type 2 Diabetes: Results from the Botnia Study. Diabetes Care. 2009;32(2):281–286. https://doi.org/10.2337/dc08-1264.

44. Khetan A.K., Rajagopalan S. Prediabetes. Can J Cardiol. 2018;34(5):615–623. https://doi.org/10.1016/j.cjca.2017.12.030.

45. Brannick B., Dagogo-Jack S. Prediabetes and Cardiovascular Disease: Pathophysiology and Interventions for Prevention and Risk Reduction. Endocrinol Metab Clin North Am. 2018;47(1):33–50. https://doi.org/10.1016/j.ecl.2017.10.001.

46. Wasserman D.H., Wang T.J., Brown N.J. The Vasculature in Prediabetes. Circ Res. 2018;122(8):1135–1150. https://doi.org/10.1161/CIRCRESAHA.118.311912.

47. Perreault L., Temprosa M., Mather K.J., Horton E., Kitabchi A., Larkin M. et al. Regression from Prediabetes to Normal Glucose Regulation Is Associated with Reduction in Cardiovascular Risk: Results from the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2014;37(9):2622–2631. https://doi.org/10.2337/dc14-0656.

48. Yakubovich N., Gerstein H.C. Is Regression to Normoglycaemia Clinically Important? Lancet. 2012;379(9833):2216–2218. https://doi.org/10.1016/S0140-6736(12)60828-9.

49. Perreault L., Pan Q., Schroeder E.B., Kalyani R.R., Bray G.A., Dagogo-Jack S. et al. Regression from Prediabetes to Normal Glucose Regulation and Prevalence of Microvascular Disease in the Diabetes Prevention Program Outcomes Study (DPPOS). Diabetes Care. 2019;42(9):1809–1815. https://doi.org/10.2337/dc19-0244.

50. Vistisen D., Kivimäki M., Perreault L., Hulman A., Witte D.R., Brunner E.J. et al. Reversion from Prediabetes to Normoglycaemia and Risk of Cardiovascular Disease and Mortality: the Whitehall II Cohort Study. Diabetologia. 2019;62(8):1385–1390. https://doi.org/10.1007/s00125-019-4895-0.


Review

For citations:


Morgunova TB, Glinkina IV, Fadeev VV. Prediabetes: challenges and opportunities. Meditsinskiy sovet = Medical Council. 2021;(12):220-227. (In Russ.) https://doi.org/10.21518/2079-701X-2021-12-220-227

Views: 688


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)