Viscoelastic properties of the iris in different types of glaucoma
https://doi.org/10.21518/2079-701X-2021-12-379-383
Abstract
Introduction. The iris is involved in maintaining the ocular hydrodynamic homeostasis as one of the elements of the anterior chamber angle of the eye. From there, the iris is one of the parts of its drainage area. The anterior chamber angle’s structure can predispose to an increase in intraocular pressure and thereby provoke the development of primary angle-closure glaucoma, a disease accompanied by clogging of the drainage area of the eye and, accordingly, an increase in intraocular pressure.
Objective. To analyse the viscoelastic properties of the iris in primary angle-closure glaucoma and primary open-angle glaucoma.
Materials and methods. The study material was a fragment of the iris obtained through iridectomy in the course of sinus trabeculectomy, which is considered the treatment for glaucoma surgery. A total of 43 samples (43 patients) were obtained and analysed, with 20 samples obtained from patients with primary angle-closure glaucoma (group 1), and 23 samples from patients with primary open-angle glaucoma (group 2). A standard ophthalmological examination, which included visometry, autorefractometry, tonometry, biomicroscopy, and indirect ophthalmoscopy, was carried out. The special examination included static perimetry, gonioscopy, ultrasound biomicroscopy or optical coherence tomography of the anterior chamber angle, optical coherence tomography of the disk of optic nerve.
Results and discussion. The avascular part of the stroma (designated by us as S) is the most rigid part of the iris, according to the study. It is characterized by the greatest efforts of the viscous dynamic resistance to the indenter (0.4–2.0 gf/мм2 × S), as well as the maximum integral tensile strength (up to 4.9 × 10-2 N). The inner (vascular) part of the stroma has the lowest dynamic viscosity, according to this study.
Conclusion. The samples vary enormously both in the biomechanical characteristics and relative thickness of this layer. It was observed that this biomechanically incompetent structure completely collapses and ceases to exist in partial dehydration of the sample.
About the Authors
G. V. VoroninRussian Federation
Dr. Sci. (Med.), Professor of the Department of Eye Diseases, 8, Bldg. 2, Trubetskaya St., Moscow, 119991;
Head of the Department of Refractive Disorders, 11 A, B, Rossolimo St., Moscow, 119021
A. E. Sangahawi
Russian Federation
Ophthalmologist, Postgraduate Student of the Department of Eye Diseases of the Institute of Clinical Medicine named after N.V. Sklifosovsky,
8, Bldg. 2, Trubetskaya St., Moscow, 119991
V. D. Yartsev
Russian Federation
Cand. Sci. (Med.), Senior Researcher,
11 A, B, Rossolimo St., Moscow, 119021
Z. V. Surnina
Russian Federation
Cand. Sci. (Med.), Senior Researcher,
11 A, B, Rossolimo St., Moscow, 119021
M. N. Narbut
Russian Federation
Junior Researcher,
11 A, B, Rossolimo St., Moscow, 119021
References
1. Ozkan Aksoy N., Cakir B., Dogan E., Alagoz G. Evaluation of Anterior Segment Parameters in Pseudoexfoliative Glaucoma, Primary AngleClosure Glaucoma, and Healthy Eyes. Turk J Ophthalmol. 2018;48(5): 227–231. https://doi.org/10.4274/tjo.03271.
2. Ritch R., Lowe R.F. Angle Closure Glaucoma. In: Ritch R., Shields M.B., Krupin T. (eds.). The Glaucomas. St. Louis: Mosby; 1996, pp. 801–840.
3. Zhang Y., Li S.Z., Li L., He M.G., Thomas R., Wang N.L. Dynamic Iris Changes as a Risk Factor in Primary Angle Closure Disease. Invest Ophthalmol Vis Sci. 2016;57(1):218–226. https://doi.org/10.1167/iovs.15-17651.
4. Epstein D.L., Hashimoto J.M., Anderson P.J., Grant W.M. Experimental perfusions through the anterior and vitreous chambers with possible relationships to malignant glaucoma. Am J Ophthalmol. 1979;88(6):1078–1086. https://doi.org/10.1016/0002-9394(79)90420-3.
5. Heys J., Barocas V.H. Mechanical characterization of the bovine iris. J Biomech. 1999;32(9):999–1003. https://doi.org/10.1016/s0021-9290(99)00075-5.
6. Tiedeman J.S. A physical analysis of the factors that determine the contour of the iris. Am J Ophthalmol. 1991;111(3):338–343. https://doi.org/10.1016/s0002-9394(14)72319-0.
7. Weinreb R.N., Friedman D.S. (eds.). Angle Closure and Angle Closure Glaucoma: Consensus Series – 3. The Hague: SPB Academic Publishing BV; 2006. 113 p. Available at: https://www.oculist.net/downaton502/prof/ebook/glaucoma/AIGSAngleClosureandAngleClosureGlaucoma.pdf.
8. Whitcomb J.E., Amini R., Simha N.K., Barocas V.H. Anterior-posterior asymmetry in iris mechanics measured by indentation. Exp Eye Res. 2011;93(4):475–481. https://doi.org/10.1016/j.exer.2011.06.009.
9. He M., Lu Y., Liu X., Ye T., Foster P.J. Histologic changes of the iris in the development of angle closure in Chinese eyes. J Glaucoma. 2008;17(5):386–392. https://doi.org/10.1097/IJG.0b013e31815c5f69.
10. Huang E.C., Barocas V.H. Active iris mechanics and pupillary block: steady-state analysis and comparison with anatomical risk factors. Ann Biomed Eng. 2004;32(9):1276–1285. https://doi.org/10.1114/b:abme.0000039361.17029.da.
11. Narayanaswamy A., Nai M.H., Nongpiur M.E., Htoon H.M., Thomas A., Sangtam T. et al. Young’s Modulus Determination of Normal and Glaucomatous Human Iris. Invest Ophthalmol Vis Sci. 2019;60(7):2690– 2695. https://doi.org/10.1167/iovs.18-26455.
12. Tello C., Tran H.V., Liebmann J., Ritch R. Angle closure: classification, concepts, and the role of ultrasound biomicroscopy in diagnosis and treatment. Semin Ophthalmol. 2002;17(2):69–78. https://doi.org/10.1076/soph.17.2.69.14722.
13. Avetisov S.E., Erichev V.P., Boudzinskaya M.V, Karpilova M.A, Gurova I.V., Shcegoleva I.V., Chikoun E.A. Age-related Macular Degeneration and Glaucoma: Intraocular Pressure Monitoring after Intravitreal Injections. Vestnik Oftalmologii = The Russian Annals of Ophthalmology. 2012;(6):3–5. (In Russ.) Available at: https://www.mediasphera.ru/issues/vestnikoftalmologii/2012/6/030042-465X201261.
14. Avetisov S.E., Mamikonyan V.R., Kazaryan E.E., Shmeleva-Demir O.A., Galoyan N.S., Maruzova Yu. V., Tatevosyan A.A., Ryzhkova E.G. Results of clinical evaluation of a new screening method for determining the individual normal level of intraocular pressure. Vestnik Oftalmologii = The Russian Annals of Ophthalmology. 2010;(2):5–7. (In Russ.) Available at: https://elibrary.ru/item.asp?id=14749586.
15. Nabiev A.M., Egorov E.A. On expediency of immunotherapy of patients with angle–closure glaucoma. RMGh. Clinicheskaja ophtalmologiya = RMJ. Russian Journal of Clinical Ophthalmology. 2005;(4):156–158. (in Russ.) Avalable at: https://www.rmj.ru/articles/oftalmologiya/O_celesoobraznosti_immunoterapii_bolynyh_zakrytougolynoy_glaukomoy.
16. Nesterov A.P., Egorov E.A., Novoderezhkin V.V. Laser methods of hydrodynamic activation of intraocular fluid outflow. RMGh. Clinicheskaja ophtalmologiya = RMJ. Russian Journal of Clinical Ophthalmology. 2005;(1):16–17. (In Russ.) Avalable at: https://www.rmj.ru/articles/oftalmologiya/Lazernye_sposoby_gidrodinamicheskoy_aktivacii_ottoka_VGGh.
17. Yermolaev A.P. On a connection of early manifestations of angle closure glaucoma and development of posterior vitreous detachment. Vestnik Oftalmologii = The Russian Annals of Ophthalmology. 2013;(2):24–28. (In Russ.) Available at: https://www.mediasphera.ru/issues/vestnikoftalmologii/2013/2/030042-465X201325.
18. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013.
Review
For citations:
Voronin GV, Sangahawi AE, Yartsev VD, Surnina ZV, Narbut MN. Viscoelastic properties of the iris in different types of glaucoma. Meditsinskiy sovet = Medical Council. 2021;(12):379-383. (In Russ.) https://doi.org/10.21518/2079-701X-2021-12-379-383