Preview

Meditsinskiy sovet = Medical Council

Advanced search

New data on well-known drug: focus on meldonium

https://doi.org/10.21518/2079-701X-2021-14-110-117

Abstract

The article reviews the efficacy of meldonium in patients with various diseases, which are based on secondary mitochondrial dysfunction. Mitochondria are complex cellular organelles that control many metabolic processes, including fatty acid oxidation, the Krebs cycle, oxidative phosphorylation in the electron transport chain, and many other processes. Many conditions can lead to secondary mitochondrial dysfunction and affect other diseases. Damage to mitochondria can promote the activation of free radical processes and the  initiation of  the  mechanisms of  programmed cell death, mitochondrial dysfunction decrease in the immune response, increase in the activity of the body’s inflammatory response in various infections. Mitochondria appear to be important in COVID-19 pathogenesis because of its role in innate antiviral immunity, as well as inflammation. The article presents data on the effectiveness of using meldonium as a drug that helps to arrest pathological processes in mitochondria. The main mechanism of action of meldonium is based on a decrease in L-carnitine levels and increase of peroxisomes activity in the cytosol Meldonium was designed as a inhibitor of carnitine biosynthesis aimed to prevent accumulation of cytotoxic intermediate products of fatty acid beta- oxidation in ischemic tissues and to block this highly oxygen- consuming process. It is based on the correction of the energy metabolism of the cell. There was a positive trend in the use of meldonium in patients with diseases of the cardiovascular system (chronic ischemic diseases, chronic heart failure, arterial hypertension, etc.), neurological disorders (stroke, cerebrovascular insufficiency, etc.), respiratory diseases. The data on the beneficial effect of meldonium on the immune response in patients with coronavirus, bronchial asthma, chronic obstructive pulmonary disease, during vaccination with anti-influenza serum are presented. A decrease in asthenia was noted against the background of the use of meldonium in patients who had undergone coronavirus infection.

About the Authors

M. E. Statsenko
Volgograd State Medical University
Russian Federation

Mikhail E. Statsenko, Dr. Sci. (Med.), Professor, Vice- Rector for Research, Head of the Department of Internal Medicine

1, Pavshikh Bortsov Square, Volgograd, 400131



S. V. Turkina
Volgograd State Medical University
Russian Federation

Svetlana V. Turkina, Dr. Sci. (Med.), Professor of the Department of Internal Medicine

1, Pavshikh Bortsov Square, Volgograd, 400131



Yu. E. Lopushkova
Volgograd State Medical University
Russian Federation

Yuliya E. Lopushkova, Assistant of the Department of Internal Medicine

1, Pavshikh Bortsov Square, Volgograd, 400131



References

1. Johannsen D.L., Ravussin E. The Role of Mitochondria in Health and Disease. Curr Opin Pharmacol. 2009;9(6):780–786. https://doi.org/10.1016/j.coph.2009.09.002.

2. Reddy P.H., Reddy T.P. Mitochondria as a Therapeutic Target for Aging and Neurodegenerative Diseases. Curr Alzheimer Res. 2011;8(4):393–409. https://doi.org/10.2174/156720511795745401.

3. Ma Z.A., Zhao Z., Turk J. Mitochondrial Dysfunction and Beta-Cell Failure in Type 2 Diabetes melliTus. Exp Diabetes Res. 2012;703538. https://doi.org/10.1155/2012/703538.

4. Limongelli G., Masarone D., D’Alessandro R., Elliott P.M. Mitochondrial Diseases and the Heart: An Overview of Molecular Basis, Diagnosis, Treatment and Clinical Course. Future Cardiol. 2012;8(1):71–88. https://doi.org/10.2217/fca.11.79.

5. Joseph A.M., Joanisse D.R., Baillot R.G., Hood D.A. Mitochondrial Dysregulation in the Pathogenesis of Diabetes: Potential for Mitochondrial BiogenesisMediated Interventions. Exp Diabetes Res. 2012;642038. https://doi.org/10.1155/2012/642038.

6. Boland M.L., Chourasia A.H., Macleod K.F. Mitochondrial Dysfunction in Cancer. Front Oncol. 2013;3:292. https://doi.org/10.3389/fonc.2013.00292.

7. Zhan M., Brooks C., Liu F., Sun L., Dong Z. Mitochondrial Dynamics: Regulatory Mechanisms and Emerging Role in Renal Pathophysiology. Kidney Int. 2013;83(4):568–581. https://doi.org/10.1038/ki.2012.441.

8. Lash L.H. Diverse Roles of Mitochondria in Renal Injury from Environmental Toxicants and Therapeutic Drugs. Int J Mol Sci. 2021;22(8):4172. https://doi.org/10.3390/ijms22084172.

9. Valenti D., Vacca R.A., Moro L., Atlante A. Mitochondria Can Cross Cell Boundaries: An Overview of the Biological Relevance, Pathophysiological Implications and Therapeutic Perspectives of Intercellular Mitochondrial Transfer. Int J Mol Sci. 2021;22(15):8312. https://doi.org/10.3390/ijms22158312.

10. Bahat A., Gross A. Mitochondrial Plasticity in Cell Fate Regulation. J Biol Chem. 2019;294:13852–13863. https://doi.org/10.1074/jbc.REV118.0008.

11. Lisowski P., Kannan P., Mlody B., Prigione A. Mitochondria and the Dynamic Control of Stem Cell Homeostasis. EMBO Rep. 2018;19(5):e45432. https://doi.org/10.15252/embr.201745432.

12. Nicolson G.L. Mitochondrial Dysfunction and Chronic Disease: Treatment with Natural Supplements. Integr Med (Encinitas). 2014;(4):35–43. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566449/.

13. Niyazov D.M., Kahler S.G., Frye R.E. Primary Mitochondrial Disease and Secondary Mitochondrial Dysfunction: Importance of Distinction for Diagnosis and Treatment. Mol Syndromol. 2016;(3):122–137. https://doi.org/10.1159/000446586.

14. Parikh S., Goldstein A., Koenig M.K., Scaglia F., Enns G.M., Saneto R. et al. Diagnosis and Management of Mitochondrial Disease: A Consensus Statement from the Mitochondrial Medicine Society. Genet Med. 2015;17(9):689–701. https://doi.org/10.1038/gim.2014.177.

15. Sjakste N., Gutcaits A., Kalvinsh I. Mildronate: An Antiischemic Drug for Neurological Indications. CNS Drug Rev. 2005;11:151–168. https://doi.org/10.1111/j.1527-3458.2005.tb00267.x.

16. Statsenko M.E., Turkina S.V., Belenkova S.V., Poletaeva L.V., Dudchenko G.P. Mildronate in Complex Chronic Heart Failure Management among Patients in Early Post Infarction Period. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2005;(6):62–66. (In Russ.) Available at: https://russjcardiol.elpub.ru/jour/article/view/2344.

17. Dzerve V. A Dose-Dependent Improvement in Exercise Tolerance in Patients with Stable Angina Treated with Mildronate: A Clinical Trial “MILSS I”. Medicina (Kaunas). 2011;47(10):544–551. Available at: https://pubmed.ncbi.nlm.nih.gov/22186118/.

18. Belovol A.N., Knyaz’kova I.I. Therapeutic Potential of Meldonium in Acute Coronary Syndrome. Liky Ukrayiny. Kardionevrolohiya = Medicines of Ukraine. Cardioneurology. 2012;(1):48–53. (In Russ.) Available at: http://repo.knmu.edu.ua/bitstream/123456789/1730/1/48-53.pdf.

19. Statsenko M.Ye., Turkina S.V., Shilina N.N. The Role of pFox Inhibitors in the Treatment of Patients with Acute Myocardial Ischemia. Terapevticheskii arkhiv = Therapeutic Archive. 2014;86(1):54–59. (In Russ.) Available at: https://www.mediasphera.ru/issues/terapevticheskij-arkhiv/2014/1/030040-3660201419.

20. Statsenko M.E., Turkina S.V., Fabritskaya S.V., Shilina N.N. Efficiency of Short-Term Therapy with Meldonium in Patients with Chronic Heart Failure of Ischemic Etiology and Type 2 Diabetes Mellitus. Kardiologiya. 2017;57(4): 58–63. (In Russ.) Available at: https://elibrary.ru/item.asp?id=29076299.

21. Statsenko M.E., Turkina S.V., Tyschenko I.A., Fabritskaya S.V., Poletaeva L.V. Possibilities of Medical Correction of Secondary Mitochondrial Dysfunction in Patients with Coronary Heart Disease and Comorbid Pathology. Farmateka. 2017;(6):75–80. (In Russ.) Available at: https://pharmateca.ru/ru/archive/article/34751.

22. Gordeev I.G., Luchinkina E.E., Hegay S.V. Cytoprotector Mildronate in Correcting Myocardial Dysfunction among Stable Angina Patients after Coronary Revascularisation. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2009;(2):54–58. (In Russ.) Available at: https://russjcardiol.elpub.ru/jour/article/view/1338?locale=ru_RU.

23. Kuznetsova A. V., Teplyakov A. T. Evaluation of the Effect of Cardionat on the Effectiveness of Antianginal Therapy and the Functional State of the Myocardium in Patients with Coronary Artery Disease in Combination with Arterial Hypertension Associated with Type 2 Diabetes Mellitus. RMZh = RMJ. 2009;(4):216–218. (In Russ.) Available at: https://www.rmj.ru/articles/kardiologiya/Ocenka_vliyaniya_Kardionata_na_effektivnosty_antianginalynoy_terapii_i_funkcionalynoe__sostoyanie_miokarda_u_bolynyh_IBS__v_sochetanii_s_arterialynoy_gipertenziey_associirovannoy_s_saharnym_diabetom_2_tipa/.

24. Loginina I.P., Kalvinsh I.Ya. Mildronate in Neurology. Riga; 2012. 56 p. (In Russ.) Available at: https://white-medicine.com/files/pubfiles/_u1k1lpf7.pdf.

25. Firsov A.A., Smirnov M.V. The effectiveness of cytoprotective therapy in stroke. Arkhiv vnutrenney meditsiny = The Russian Archives of Internal Medicine. 2011;(2): 39–43. (In Russ.) Available at: https://www.medarhive.ru/jour/article/view/30/0.

26. Suslina Z.A., Maksimova M.Yu., Kistenev B.A., Fedorova T.N. Neuroprotection in Ischemic Stroke: the Effectiveness of Mildronate. 2005;(13):99–104. (In Russ.) Available at: https://pharmateca.ru/ru/archive/article/6266.

27. Statsenko M.E., Nedogoda S.V., Turkina S.V., Tyshchenko I.A., Poletaeva L.V., Chumachok E.V. et al. Mildronate Potential for Correcting Cognitive Dysfunction in Elderly Patients with Arterial Hypertension. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2011;(4):919–915. (In Russ.) Available at: https://russjcardiol.elpub.ru/jour/article/view/1129?locale=ru_RU.

28. Nedogoda S.V., Statsenko M.E., Turkina S.V., Tyshchenko I.A., Poletaeva L.V., Tsoma V.V. et al. Mildronate Effects on Cognitive Function in Elderly Patients with Arterial Hypertension. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2012;11(5):33–38. (In Russ.) https://doi.org/10.15829/1728-8800-2012-5-33-38.

29. Statsenko M.E., Lopushkova Yu.E., Derevianchenko M.V., Urlapova E.I. Effect of Meldonium on Arterial Stiffness and C-Reactive Protein Level in Complex Therapy of Chronic Heart Failure and Chronic Obstructive Pulmonary Disease. Terapiya = Therapy. 2020;(5):94–101. (In Russ.) https://doi.org/10.18565/therapy.2020.5.94-101.

30. Statsenko M.E., Turkina S.V., Lopushkova Yu.E., Shilina N.N. Influence of Meldonium as Part of Basic Therapy on Microcirculation Indices and Respiratory Function in Patients with Chronic Heart Failure and Chronic Obstructive Pulmonary Disease. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta = Bulletin of the Volgograd State Medical University. 2015;(1):74–78. (In Russ.) Available at: https://www.volgmed.ru/uploads/journals/articles/1460008050-vestnik-2015-1-2333.pdf.

31. Nedogoda S.V. Meldonium as a Supernosological Drug. Consilium Medicum. 2020;(5):57–61 (In Russ.) Available at: https://omnidoctor.ru/library/izdaniyadlya-vrachey/consilium-medicum/cm2020/cm2020_5_cardio/meldoniy-kaknadnozologicheskiy-preparat/.

32. Dambrova M., Makrecka-Kuka M., Vilskersts R., Makarova E., Kuka J., Liepinsh E. Pharmacological Effects of Meldonium: Biochemical Mechanisms and Biomarkers of Cardiometabolic Activity. Pharmacol. Res. 2016;113:771–780. https://doi.org/10.1016/j.phrs.2016.01.019.

33. Porter C., Constantin-Teodosiu D., Constantin D., Leighton B., Poucher S.M., Greenhaff P.L. Muscle Carnitine Availability Plays a Central Role in Regulating Fuel Metabolism in the Rodent. J. Physiol. 2017;595(17):5765–5780. https://doi.org/10.1113/JP274415.

34. Speijer D., Manjeri G.R., Szklarczyk R. How to Deal with Oxygen Radicals Stemming from Mitochondrial Fatty Acid Oxidation. Philos Trans R Soc Lond B Biol Sci. 2014;369(1646):20130446. https://doi.org/10.1098/rstb.2013.0446.

35. Schonfeld P., Wojtczak L. Short- and Medium-Chain Fatty Acids in Energy Metabolism: The Cellular Perspective. J Lipid Res. 2016;57(6):943–954. https://doi.org/10.1194/jlr.R067629.

36. Sjakste N., Kalvinsh I. Mildronate: An Antiischemic Drug with Multiple Indications. Pharmacologyonline. 2006;(1):1–18. Available at: https://www.researchgate.net/publication/264885788_Mildronate_An_Antiischemic_drug_with_multiple_indications.

37. Vertkin A.L., Sycheva A.S., Kebina A.L., Nosova A.V., Uryanskaya K.A., Gazikova Kh.M. Metabolic Support Opportunities in Coronavirus Infection. Terapiya = Therapy. 2020;(7):146–155. (In Russ.) https://doi.org/10.18565/therapy.2020.7.146-155.

38. Ebzeeva E.Yu., Ostroumova O.D., Mironova E.V. Efficacy and Safety of Mildronate in Treatment of Postinfectious Asthenic Syndrome (Clinical Examples). Meditsinskiy alfavit = Medical Alphabet. 2020;(2):61–66. (In Russ.) https://doi.org/10.33667/2078-5631-2020-2-61-66.

39. Li X., Wu K., Zeng S., Zhao F., Fan J., Li Z. et al. Viral Infection Modulates Mitochondrial Function. Int J Mol Sci. 2021;22:4260. https://doi.org/10.3390/ijms22084260.

40. Nunn A.V.W., Guy G.W., Brysch W., Botchway S.W., Frasch W., Calabrese E.J., Bell J.D. SARS-CoV-2 and Mitochondrial Health: Implications of Lifestyle and Ageing. Immun Ageing. 2020;17(1):33. https://doi.org/10.1186/s12979-020-00204-x.

41. Singh K.K., Chaubey G., Chen J.Y., Suravajhala P. Decoding SARS-CoV-2 Hijacking of Host Mitochondria in COVID-19 Pathogenesis. Am J Physiol Cell Physiol. 2020;319(2):C258–C267. https://doi.org/10.1152/ajpcell.00224.2020.

42. Prasun P. COVID-19: A Mitochondrial Perspective. DNA Cell Biol. 2021;40(6):713–719. https://doi.org/10.1089/dna.2020.6453.

43. Banu N., Panikar S.S., Leal L.R., Leal A.R. Protective Role of ACE2 and Its Downregulation in SARS-CoV-2 Infection Leading to Macrophage Activation Syndrome: Therapeutic Implications. Life Sci. 2020;256:117905. https://doi.org/10.1016/j.lfs.2020.117905.

44. Jiang H.W., Zhang H.N., Meng Q.F., Xie J., Li Y., Chen H. et al. SARS-CoV-2 or f9b Suppresses Type I Interferon Responses by Targeting TOM70. Cell Mol Immunol. 2020;17(9):998–1000. https://doi.org/10.1038/s41423-020-0514-8.

45. Stetson D.B., Medzhitov R. Type I Interferons in Host Defense. Immunology. 2006;25(3):373–381. https://doi.org/10.1016/j.immuni.2006.08.007.

46. Gassen N.C., Papies J., Bajaj T., Jackson E., Dethloff F., Lorenz R.C. et al. SARSCoV-2-Mediated Dysregulation of Metabolism and Autophagy Uncovers HostTargeting Antivirals. Nat Commun. 2021;12(3818). https://doi.org/10.1038/s41467-021-24007-w.

47. Cheng M.H., Zhang S., Porritt R.A., Noval Rivas M., Paschold L., Willscher E. et al. Superantigenic Character of an Insert Unique to SARS-CoV-2 Spike Supported by Skewed TCR Repertoire in Patients with Hyperinflammation. Proc Natl Acad Sci U S A. 2020;17(41):25254–25262. https://doi.org/10.1073/pnas.2010722117.

48. Jiang S. Mitochondrial Oxidative Phosphorylation Is Linked to T-Cell Exhaustion. Aging (Albany NY). 2020;12(17):16665–16666. https://doi.org/10.18632/age.103995.

49. Glozman V.N., Berenbein B.A., Kirmane R.E., Pervushina N.V., Shur A.A., Agranovskii V.B. Use of Mildronate in Therapy of Seroresistant Syphilis (Serologic and Immunologic Comparisons. Antibiot Khimioter. 1991;36(5):38–39. (In Russ.) Available at: https://pubmed.ncbi.nlm.nih.gov/1953172/.

50. Nikolaeva I.A., Prokopenko L.G. Immunomodulating Action of Energizing Drugs During Dosed Fasting. Patol Fiziol Eksp Ter. 1998;(3):12–15. (In Russ.) Available at: https://pubmed.ncbi.nlm.nih.gov/9819550/.

51. Kremerman I.B., Priĭmiagi L.S., Kal’vin’sh I.Ia., Lukevits E.Ia. Interferon-Inducing and Anti-Influenzal Properties of 3-(2,2,2-Trimethylhydrazine)Propionate in an Experiment. Vopr Virusol. 1987;32(5):576–579. (In Russ.) Available at: https://pubmed.ncbi.nlm.nih.gov/2448958/.

52. Kubar O.I., Bryantseva E.A., Davydova T.V., Furgal S.M., Bubeneva T.V., Koltygina N.V. Clinical Study of the Immunoadvant Effect of Mildronate When Vaccinated with an Inactivated Influenza Vaccine. Eksperimentalnaya i klinicheskaya farmakoterapiya = Experimental and Clinical Pharmacotherapy. 1992;20.


Review

For citations:


Statsenko ME, Turkina SV, Lopushkova YE. New data on well-known drug: focus on meldonium. Meditsinskiy sovet = Medical Council. 2021;(14):110-117. (In Russ.) https://doi.org/10.21518/2079-701X-2021-14-110-117

Views: 4386


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)