Preview

Meditsinskiy sovet = Medical Council

Advanced search

Prediabetes. A new paradigm for early prevention of cardiovascular disease

https://doi.org/10.21518/2079-701X-2021-14-124-132

Abstract

This literature review focuses on the association of prediabetes with cardiovascular disease (CVD). Recently, much attention has been paid to the study of prediabetes due to its extremely high prevalence and strong association with a high risk of developing serious complications that worsen the quality of kife of patients. Prediabetes is not only a metabolic condition with a high risk of developing type 2 diabetes mellitus (T2DM), but also CVD and death from all causes. This association is true for both patients who do not yet have CVD and those with a history of CVD. Also during the COVID-19 pandemic, attention is drawn to the fact that people with prediabetes have a higher risk of a severe course of infection, complications and a worse prognosis of the disease. This is associated with hyperglycemia, the  presence of  chronic systemic inflammation of  a  low degree of  activity, impaired immune response mechanisms and a procoagulant state in patients with prediabetes, although these disorders are less developed than in patients with T2DM. Therefore, early screening of early disorders of normal metabolism. Since active early intervention at the stage of prediabetes helps to prevent the development of type 2 diabetes and CVD.

About the Authors

T. Y. Demidova
Pirogov Russian National Research Medical University
Russian Federation

Tatiana Y. Demidova, Dr. Sci. (Med.), Professor, Head of Department of Endocrinology, Faculty of General Medicine

1, Ostrovityanov St., Moscow, 117997



V. M. Plakhotnyaya
Pirogov Russian National Research Medical University
Russian Federation

Viktoria M. Plakhotnyaya, Clinical Resident, Department of Endocrinology, Faculty of General Medicine

1, Ostrovityanov St., Moscow, 117997



References

1. Cai X., Zhang Y., Li M., Wu J.H., Mai L., Li J. et al. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ. 2020;370:m2297. https://doi.org/10.1136/bmj.m2297.

2. Hostalek U. Global epidemiology of prediabetes – present and future perspectives. Clin Diabetes Endocrinol. 2019;5:5. https://doi.org/10.1186/s40842-019-0080-0.

3. Weiss R., Santoro N., Giannini C., Galderisi A., Umano G.R., Caprio S. Prediabetes in youth – mechanisms and biomarkers. Lancet Child Adolesc Health. 2017;1(3):240–248. https://doi.org/10.1016/S2352-4642(17)30044-5.

4. Wang T., Lu J., Su Q., Chen Y., Bi Y., Mu Y. et al. Ideal cardiovascular health metrics and major cardiovascular events in patients with prediabetes and diabetes. JAMA Cardiol. 2019;4(9):874–883. https://doi.org/10.1001/jamacardio.2019.2499.

5. Lu J., He J., Li M., Tang X., Ruying H., Shi L. et al. Predictive value of fasting glucose, postload glucose, and hemoglobin A1c on risk of diabetes and complications in Chinese adults. Diabetes Care. 2019;42(8):1539–1548. https://doi.org/10.2337/dc18-1390.

6. Hubbard D., Colantonio L.D., Tanner R.M., Carson A.P., Sakhuja S., Jaeger B.C. et al. Prediabetes and risk for cardiovascular disease by hypertension status in black adults: the Jackson heart study. Diabetes Care. 2019;42(12):2322–2329. https://doi.org/10.2337/dc19-1074.

7. Tang K., Cores O., Matsushitah J., Sharrett A.R., McEvoy J.W., Windham B.G. et al. Mortality implications of prediabetes and diabetes in older adults. Diabetes Care. 2020;43(2):382–388. https://doi.org/10.2337/dc19-1221.

8. Welsh C., Welsh P., Celis-Morales C.A., Mark P.B., Mackay D., Ghouri N. et al. Glycated hemoglobin, prediabetes, and the links to cardiovascular disease: data from UK Biobank. Diabetes Care. 2020;43(2):440–445. https://doi.org/10.2337/dc19-1683.

9. Vistisen D., Witte D.R., Brunner E.J., Kivimaki M., Tabak A., Jorgensen M.E., Færch K. Risk of cardiovascular disease and death in individuals with prediabetes defined by different criteria: the Whitehall II study. Diabetes Care. 2018;41(4):899–906. https://doi.org/10.2337/dc17-2530.

10. Kim N.H., Kwon T.Y., Yu S., Kim N.H., Choi K.M., Baik S.H. et al. Increased vascular disease mortality risk in prediabetic Korean adults is mainly attributable to ischemic stroke. Stroke. 2017;48(4):840–845. https://doi.org/10.1161/STROKEAHA.116.015947.

11. Punjabi N.M., Daya N.R., Grams M. et al. Comparative prognostic performance of definitions of prediabetes: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2017;5(1):34–42. https://doi.org/10.1016/S2213-8587(16)30321-7.

12. Zand A., Ibrahim K., Patham B. Prediabetes: Why Should We Care? Methodist Debakey Cardiovasc J. 2018;14(4):289–297. Available at: https://pubmed.ncbi.nlm.nih.gov/30788015.

13. DECODE Study Group, on behalf of the European Diabetes Epidemiology Study Group. Will new diagnostic criteria for diabetes mellitus change phenotype of patients with diabetes? Reanalysis of European epidemiological data. BMJ. 1998;317(7155):371–375. https://doi.org/10.1136/bmj.317.7155.371.

14. Takao T., Suka M., Yanagisawa H., Iwamoto Y. Impact of postprandial hyperglycemia at clinic visits on the incidence of cardiovascular events and allcause mortality in patients with type 2 diabetes. J Diabetes Investig. 2017;8(4):600–608. https://doi.org/10.1111/jdi.12610.

15. UK Prospective Diabetes Study Group. UK prospective diabetes study (UKPDS). Diabetologia. 1999;34(12):877–890. https://doi.org/10.1007/bf00400195.

16. Skyler J.S., Bergenstal R., Bonow R.O., Buse J., Deedwania P., Gale E.A. et al. Intensive Glycemic Control and the Prevention of Cardiovascular Events: Implications of the ACCORD, ADVANCE, and VA Diabetes Trials. Diabetes Care. 2009;32(1):187–192. https://doi.org/10.2337/dc08-9026.

17. Gaede P., Lund-Andersen H., Parving H.H., Pedersen O. Effect of a Multifactorial Intervention on Mortality in Type 2 Diabetes. N Engl J Med. 2008;358:580–591. https://doi.org/10.1056/NEJMoa0706245.

18. American Diabetes Association. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes — 2020. Diabetes Care. 2020;43(1 Suppl.):32–36. https://doi.org/10.2337/dc20-S003.

19. Swarup S., Goyal A., Grigorova Y., Zeltser R. Metabolic Syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK459248.

20. American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes — 2020. Diabetes Care. 2020;43(1 Suppl.):14–31. https://doi.org/10.2337/dc20-S002.

21. Mkrtumyan A.M. Current Opportunities of Morden Innovate Drugs in Achievement of Type 2 Diabetes Long-Term Control and Reduction of the Risk of Its Complications. Effektivnaya farmakoterapiya. Endokrinologiya = Effective Pharmacotherapy. Endocrinology. 2020;16(26):26–30. (In Russ.) Available at: https://umedp.ru/articles/aktualnye_vozmozhnosti_sovremennykh_innovatsionnykh_preparatov_v_dostizhenii_dolgovremennogo_kontrol.html.

22. Sattar N., McGuire D.K. Prevention of CV outcomes in antihyperglycaemic drug-naïve patients with type 2 diabetes with, or at elevated risk of, ASCVD: to start or not to start with metformin. Eur Heart J. 2021;42(26):2574–2576. https://doi.org/10.1093/eurheartj/ehaa879.

23. Cosentino F., Grant P.J., Aboyans V., Bailey C.J., Ceriello A., Delgado V. et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255– 323. https://doi.org/10.1093/eurheartj/ehz486.

24. use J.B., Wexler D.J., Tsapas A., Rossing P., Mingrone G., Mathieu C. et al. 2019 update to: Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487–493. https://doi.org/10.2337/dci19-0066.

25. Dedov I.I., Shestakova M.V., Mayorov A.Yu. (eds.). Stndaarts of specialized diabetes care. 9th ed. Sakharnyy diabet = Diabetes Mellitus. 2019;22(1S1):1–144. (In Russ.) https://doi.org/10.14341/DM221S1.

26. Matthews D.R., Paldanius P.M., Proot P., Chiang Y., Stumvoll M., Del Prato S; VERIFY study group. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet. 2019;394(10208):1519–1529. https://doi.org/10.1016/S0140-6736(19)32131-2.

27. Knowler W.C., Barrett-Connor E., Fowler S.E., Hamman R.F., Lachin J.M., Walker E.A; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.

28. Knowler W.C., Fowler S.E., Hamman R.F., Christophi C.A., Hoffman H.J., Brenneman A.T. et al; Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374(9702):1677–1686. https://doi.org/10.1016/S0140-6736(09)61457-4.

29. Imdieke B.H. Metformin versus Lif ersus Lifestyle Modification in Diabetes Prevention: New Considerations in the Age of Healthcare Reform. Sophia: the St. Catherine University repository website; 2013. Available at: https://sophia.stkate.edu/ma_nursing/64.

30. Abusuyev S.A., Ametov A.S, Andreyeva Ye.N., Antsiferov M.B., Bardymova T.P., Belovalova I.M. et al. Prophylaxis of diabetes mellitus type 2: the role and place of Metformin. Endokrinologiya: novosti, mneniya, obucheniye = Endocrinology: News, Opinions, Training. 2017;1(18):78–87. (In Russ.) https://doi.org/10.24411/2304-9529-2017-00061.

31. Abdi A., Jalilian M., Sarbarzeh P.A., Vlaisavljevic Z. Diabetes and COVID-19: A systematic review on the current evidences. Diabetes Res Clin Pract. 2020;166:108347. https://doi.org/10.1016/j.diabres.2020.108347.

32. Corrao S., Pinelli K., Vacca M., Raspanti M., Argano C. Type 2 Diabetes Mellitus and COVID-19: A Narrative Review. Front Endocrinol (Lausanne). 2021;12:609470. https://doi.org/10.3389/fendo.2021.609470.

33. Gazzaz Z.J. Diabetes and COVID-19. Open Life Sci. 2021;16(1):297–302. https://doi.org/10.1515/biol-2021-0034.

34. Li G., Chen Z., Lv Z., Li H., Chang D., Lu J. Diabetes Mellitus and COVID-19: Associations and Possible Mechanisms. Int J Endocrinol. 2021;2021:7394378. https://doi.org/10.1155/2021/7394378.

35. Landstra C.P., de Koning E.J.P. COVID-19 and Diabetes: Understanding the Interrelationship and Risks for a Severe Course. Front Endocrinol. 2021;12:649525. https://doi.org/10.3389/fendo.2021.649525.

36. Sathish T., Cao Y., Kapoor N. Preexisting prediabetes and the severity of COVID-19. Prim Care Diabetes. 2021;15(1):28–29. https://doi.org/10.1016/j.pcd.2020.09.002.

37. Sosibo A.M., Khathi A. Pre-diabetes and COVID-19, could we be missing the silent killer? Exp Biol Med (Maywood). 2021;246(4):369–370. https://doi.org/10.1177/1535370220973451.

38. Wang S., Ma P., Zhang S., Song S., Wang Z., Ma Y. et al. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: a multi-centre retrospective study. Diabetologia. 2020;63:2102–2111. https://doi.org/10.1007/s00125-020-05209-1.

39. Li H., Tian S., Chen T., Cui Z., Shi N., Zhong X. et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19. Diabetes Obes Metab. 2020;22(10):1897–1906. https://doi.org/10.1111/dom.14099.

40. Smith S.M., Boppana A., Traupman J.A., Unson E., Maddock D.A., Chao K. et al. Impaired glucose metabolism in patients with diabetes, pre-diabetes and obesity is associated with severe COVID-19. J Med Virol. 2021;93(1):409–415. https://doi.org/10.1002/jmv.26227.

41. Sathish T., Cao Y., Kapoor N. Newly diagnosed diabetes in COVID-19 patients. Prim Care Diabetes. 2021;15(1):194. https://doi.org/10.1016/j.pcd.2020.08.014.

42. Sathish T., Kapoor N., Cao Y., Tapp R.J., Zimmet P. Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Diabetes Obes Metab. 2021;23(3):870–874. https://doi.org/10.1111/dom.14269.

43. Shestakova M.V., Vikulova O.K., Isakov M.A., Dedov I.I. Diabetes and COVID19: analysis of the clinical outcomes according to the data of Russian diabetes registry. Problemy endokrinologii = Problems of Endocrinology. 2020;66(1):35–46. (In Russ.) https://doi.org/10.14341/probl12458.

44. Lukito A.A., Pranata R., Henrina J., Lim M.A., Lawrensia S., Suastika K. The Effect of Metformin Consumption on Mortality in Hospitalized COVID-19 patients: a systematic review and meta-analysis. Diabetes Metab Syndr. 2020;14(6):2177–2183. https://doi.org/10.1016/j.dsx.2020.11.006.

45. Sasson C., Eckel R., Alger H., Bozkurt B., Carson A., Daviglus M. et al. American Heart Association Diabetes and Cardiometabolic Health Summit: Summary and Recommendations. J Am Heart Assoc. 2018;7(15):e009271. https://doi.org/10.1161/JAHA.118.009271.

46. Gerstein H.C., Harmel M. The Best Way to Prevent Type 2 Diabetes? Change Our Target. Medscape; 2021. Available at: https://www.medscape.com/viewarticle/953961.


Review

For citations:


Demidova TY, Plakhotnyaya VM. Prediabetes. A new paradigm for early prevention of cardiovascular disease. Meditsinskiy sovet = Medical Council. 2021;(14):124-132. (In Russ.) https://doi.org/10.21518/2079-701X-2021-14-124-132

Views: 519


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)