Оптимизация терапии больных бронхиальной астмой в условиях коронавирусной инфекции
https://doi.org/10.21518/2079-701X-2021-16-92-98
Аннотация
Бронхиальной астмой (БА) страдают во всем мире. Данная патология является одним из самых распространенных заболеваний дыхательной системы. В 2019 г. во всем мире началась пандемия коронавирусной инфекции (COVID-19), которая внесла большие изменения в жизнь всего населения. Слабой когортой оказались больные БА: в начале пандемии считалось, что пациенты с астмой наиболее подвержены инфицированию COVID-19 и тяжелому течению инфекции. В настоящее время известно, что БА не влияет на степень тяжести течения COVID-19. Существует мнение, что преобладание цитокинов иммунного ответа Th2 и гиперпродукция эозинофилов могут в некоторой степени противодействовать накоплению провоспалительных цитокинов, препятствуя развитию цитокинового шторма при заболевании COVID-19, что и объясняет низкое число инфицированных больных с БА. В период пандемии в клинической больнице № 4 Пензы под наблюдением было 35 пациентов с БА. В качестве базисной терапии больные получали фиксированную форму формотерола/будесонида (Формисонида) в виде дозированного порошкового ингалятора, доставка осуществлялась с помощью устройства доставки «Инхалер CDM» в разовой дозе 4,5/160 мкг. Суточный выбор доз ингаляционных глюкокортикостероидов (ИГКС) соответствовал степени тяжести БА. Средние дозы ИГКС получали 17 (48,6%), высокие – 18 чел. (51,4%). Особые свойства будесонида и формотерола дают возможность использовать их комбинацию при лечении БА одновременно в качестве поддерживающей терапии и для купирования приступов (терапия по требованию). У препарата Формисонид имеются преимущества: доза строго фиксирована, пациент имеет возможность визуально контролировать полноту полученной дозы и правильность техники ингаляции, что повышает комплаентность пациентов к терапии, особенно в условиях пандемии. Также больным БА в период пандемии COVID- 19 необходимо организовать регулярный врачебный контроль в виде консультаций в режиме онлайн через современные мессенджеры, обучить пациентов способам контроля заболевания и режиму дозирования базисной терапии.
Ключевые слова
Об авторах
Е. М. КостинаРоссия
Костина Елена Михайловна, д.м.н., профессор кафедры аллергологии и иммунологии
440060, Россия, Пенза, ул. Стасова, д. 8а
Е. Ю. Трушина
Россия
Трушина Елена Юрьевна, к.м.н., ассистент кафедры пульмонологии и фтизиатрии
440060, Россия, Пенза, ул. Стасова, д. 8а
Е. А. Орлова
Россия
Орлова Екатерина Александровна, д.м.н., профессор кафедры аллергологии и иммунологии
440060, Россия, Пенза, ул. Стасова, д. 8а
Список литературы
1. Чучалин А.Г., Авдеев С.Н., Айсанов З.Р., Белевский А.С., Васильева О.С., Геппе Н.А. и др. Бронхиальная астма: клинические рекомендации. М.: Министерство здравоохранения Российской Федерации; 2019. 97 с. Режим доступа: http://spulmo.ru/upload/kr_bronhastma_2019.pdf.
2. Авдеев С.Н., Адамян Л.В., Алексеева Е.И., Багненко С.Ф., Баранов А.А., Баранова Н.Н. и др. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 9 (26.10.2020). М.: Министерство здравоохранения Российской Федерации; 2020. 236 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/548/original/МР_COVID-19_%28v.9%29.pdf.
3. Van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N. et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–1567. https://doi.org/10.1056/nejmc2004973.
4. Mason R.J. Pathogenesis of COVID-19 from a Cell Biology Perspective. Eur Respir J. 2020;55(4):2000607. https://doi.org/10.1183/13993003.00607-2020.
5. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.
6. Wu Z., McGoogan J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–1242. https://doi.org/10.1001/jama.2020.2648.
7. Johnston S.L. Asthma and COVID-19: Is Asthma a Risk Factor for Severe Outcomes? Allergy. 2020;75(7):1543–1545. https://doi.org/10.1111/all.14348.
8. Zhang J.J., Dong X., Cao Y.Y., Yuan Y.D., Yang Y.B., Yan Y.Q. et al. Clinical Characteristics of 140 Patients Infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–1741. https://doi.org/10.1111/all.14238.
9. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X. et al. China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. https://doi.org/10.1056/NEJMoa2002032.
10. Robinson L.B., Wang L., Fu X., Wallace Z.S., Long A.A., Zhang Y. et al. COVID-19 Severity in Asthma Patients: A Multi-Center Matched Cohort Study. J Asthma. 2021;1–14. https://doi.org/10.1080/02770903.2020.1857396.
11. Korean Society of Infectious Diseases; Korean Society of Pediatric Infectious Diseases; Korean Society of Epidemiology; Korean Society for Antimicrobial Therapy; Korean Society for Healthcare-associated Infection Control and Prevention; Korea Centers for Disease Control and Prevention. Report on the epidemiological features of coronavirus disease 2019 (COVID-19) out break in the Republic of Korea from January 19 to March 2, 2020. J Korean Med Sci. 2020;35(10):e112. https://doi.org/10.3346/jkms.2020.35.e112.
12. Antonicelli L., Tontini C., Manzotti G., Ronchi L., Vaghi A., Bini F. et al. Severe Asthma in Adults Does Not Significantly Affect the Outcome of COVID-19 Disease: Results from the Italian Severe Asthma Registry. Allergy. 2021;76(3):902–905. https://doi.org/10.1111/all.14558.
13. Bai C., Chotirmall S.H., Rello J., Alba G.A., Ginns L.C., Krishnan J.A. Updated Guidance on the Management of COVID-19: From an American Thoracic Society/European Respiratory Society Coordinated International Task Force (29 July 2020). Eur Respir Rev. 2020;29(157):200287. https://doi.org/10.1183/16000617.0287-2020.
14. Arden K.E., Chang A.B., Lambert S.B., Nissen M.D., Sloots T.P., Mackay I.M. Newly Identified Respiratory Viruses in Children with Asthma Exacerbation Not Requiring Admission to Hospital. J Med Virol. 2010;82:1458–1461. https://doi.org/10.1002/jmv.21819.
15. Johnston S.L., Pattemore P.K., Sanderson G., Smith S., Campbell M.J., Josephs L.K. et al. The Relationship between Upper Respiratory Infections and Hospital Admissions for Asthma: A Time-Trend Analysis. Am J Respir Crit Care Med. 1996;154:654–660. https://doi.org/10.1164/ajrccm.154.3.8810601.
16. Khetsuriani N., Kazerouni N.N., Erdman D.D., Lu X., Redd S.C., Anderson L.J. et al. Prevalence of Viral Respiratory Tract Infections in Children with Asthma. J Allergy Clin Immunol. 2007;119:314–321. https://doi.org/10.1016/j.jaci.2006.08.041.
17. Te Velde A.A., Huijbens R.J., Heije K., de Vries J.E., Figdor C.G. Interleukin-4 (IL-4) Inhibits Secretion of IL-1 Beta, Tumor Necrosisfactor Alpha, and IL-6 by Human Monocytes. Blood. 1990;76(7):1392–1397. Available at: https://www.sciencedirect.com/science/article/pii/S0006497120753164?via%3Dihub.
18. Levings M.K., Schrader J.W. IL-4 Inhibits the Production of TNF-alpha and IL-12 by STAT6-Dependent and Independent Mechanisms. J Immunol. 1999;162(9):5224–5229. Available at: https://www.jimmunol.org/content/162/9/5224.long.
19. De Vries J.E. The role of IL-13 and Its Receptor in Allergy Andinflammatory Responses. J Allergy Clin Immunol. 1998;102(2):165–169. https://doi.org/10.1016/s0091-6749(98)70080-6.
20. Rosenberg H.F., Dyer K.D., Domachowske J.B. Respiratory Viruses and Eosinophils: Exploring the Connections. Antivir Res. 2009;83(1):1–9. https://doi.org/10.1016/j.antiviral.2009.04.005.
21. Pilette C., Ouadrhiri Y., Van Snick J., Renauld J.C., Staquet P., Vaerman J.P., Sibille Y. IL-9 Inhibits Oxidative Burst and TNF-alpha Release in Lipopolysaccharide Stimulated Human Monocytesthrough TGF-beta. J Immunol. 2002;168(8):4103–4111. https://doi.org/10.4049/jimmunol.168.8.4103.
22. Rosenberg H.F., Dyer K.D., Domachowske J.B. Eosinophil Sand Their Interactions with Respiratory Virus Pathogens. Immunol Res. 2009;43(1–3):128–137. https://doi.org/10.1007/s12026-008-8058-5.
23. Du Y., Tu L., Zhu P., Mu M., Wang R., Yang P. et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan: a retrospective observational study. Am J Respir Crit Care Med. 2020;201:1372–1379. https://doi.org/10.1164 / rccm.202003-0543OC.
24. Hassani M., Leijte G., Bruse N., Kox M., Pickkers P., Vrisekoop N. et al. Differentiation and Activation of Eosinophils in the Human Bone Marrow during Experimental Human Endotoxemia. J Leukoc Biol. 2020;108(5):1665–1671. https://doi.org/10.1002 / JLB.1AB1219-493R.
25. Butterfield J.H. Treatment of Hypereosinophilic Syndromes with Prednisone, Hydroxyurea, and Interferon. Immunol Allergy Clin North Am. 2007;27(3):493–518. https://doi.org/10.1016/j.iac.2007.06.003.
26. Yamaya M., Nishimura H., Deng X., Sugawara M., Watanabe O., Nomura K. et al. Inhibitory Effects of Glycopyrronium, Formoterol, and Budesonide on Coronavirus HCoV-229E Replication and Cytokine Production by Primary Cultures of Human Nasal and Tracheal Epithelial Cells. Respir Investig. 2020;58(3):155–168. https://doi.org/10.1016/j.resinv.2019.12.005.
27. Matsuyama S., Kawase M., Nao N., Shirato K., Ujike M., Kamitani W. et al. The Inhaled Corticosteroid Ciclesonide Blocks Coronavirus RNA Replication by Targeting Viral NSP15. bioRxiv. 2020.03.11.987016. https://doi.org/10.1101/2020.03.11.987016.
28. Jeon S., Ko M., Lee J., Choi I., Byun S.Y., Park S. et al. Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs. Antimicrob Agents Chemother. 2020;64(7):e00819–e00820. https://doi.org/10.1128/AAC.00819-20.
29. Johnston S.L. Overview of Virus-Induced Airway Disease. Proc Am Thorac Soc. 2005;2(2):150–156. https://doi.org/10.1513/pats.200502-018AW.
30. Ramakrishnan S., Nicolau D.V., Langford B., Mahdi M. Inhaled Budesonide in the Treatment of early COVID-19 (STOIC): A Phase 2, open-Label, Randomised Controlled Trial. Lancet Respir Med. 2021;9(7):763–772. https://doi.org/10.1016/S2213-2600(21)00160-0.
31. Цой А.Н. Симбикорт: стандарт рационального применения единого ингалятора для контроля бронхиальной астмы. Пульмонология и аллергология. 2008;(4):18–25. Режим доступа: http://www.atmosphere-ph.ru/modules/Magazines/articles/pulmo/ap_4_2008_18.pdf.
32. Визель А.А., Белевский А.С., Визель И.Ю. К лечению бронхиальной астмы и хронической обструктивной болезнью легких: идем вперед с проверенными молекулами. Лечебное дело. 2020;(2):59–64. https://doi.org/10.24411/2071-5315-2020-12212.
33. Игнатова Г.Л., Белевский А.С. Современные способы ингаляционной доставки лекарств при лечении бронхообструктивных заболеваний. Астма и аллергия. 2018;(2):21–28. Режим доступа: http://www.atmosphereph.ru/modules/Magazines/articles/astma/Asthma_2_2018_21.pdf.
34. Зырянов С.К., Галеева Ж.А., Белоусов Ю.Б. Качественные генерики для лечения бронхообструктивных заболеваний: свет в конце тоннеля есть! Лечащий врач. 2014;(11):1–8. Режим доступа: https://www.lvrach.ru/2014/11/15436100.
35. Бердникова Н., Журавлева М., Кукес В. Персонализированный подход к фармакотерапии бронхообструктивного синдрома. Врач. 2015;(7):24–29. Режим доступа: https://vrachjournal.ru/ru/25877305-2015-07-05.
Рецензия
Для цитирования:
Костина Е.М., Трушина Е.Ю., Орлова Е.А. Оптимизация терапии больных бронхиальной астмой в условиях коронавирусной инфекции. Медицинский Совет. 2021;(16):92-98. https://doi.org/10.21518/2079-701X-2021-16-92-98
For citation:
Kostina E.M., Trushina E.Yu., Orlova E.A. Optimization of therapy of patients with bronchial asthma in conditions of coronavirus infection. Meditsinskiy sovet = Medical Council. 2021;(16):92-98. (In Russ.) https://doi.org/10.21518/2079-701X-2021-16-92-98