Preview

Meditsinskiy sovet = Medical Council

Advanced search

Breast milk microbiota (concept, sources, role of bacteria for a child and mother)

https://doi.org/10.21518/2079-701X-2022-16-1-27-35

Abstract

Scientific discoveries of recent years demonstrate a crucial role of the human microbiome in human health. The establishment of a healthy, functional gut microbiota of the newborn requires physiological conditions, one of which is breastfeeding. The role of breast milk as a “direct supplier” of live microbes for the establishment of the newborn gut microbiota became known only at the beginning of the new millennium, previously it was believed that the breast milk was sterile. Today, the breast milk microbiota can be defined as multi-species assemblage, in which microbes interact with each, representing a complex organized ecosystem, among which the genera Streptococcus and Staphylococcus are dominant. Lactobacillus, Pseudomonas, Bifidobacterium, Corynebacterium, Enterococcus, Acinetobacter, Rothia, Cutibacterium, Veillonella and Bacteroides are also often referred to the common bacterial genera. The article presents two theories of the origin of bacteria in the breast milk (endogenous and exogenous bacterial translocation pathways) and explains why both of them are true. The role of bacteria in the breast milk of healthy women, in the global sense, is viewed in the context of the establishment of the infant gut microbiota. The article lists the main producers of antibacterial peptides (bacteriocins) in the breast milk and considers the effective immunological protection using the example of the population of bifidobacteria and bacteroids prevailing in the breastfed infant gut. However, the breast milk microbiota is also important for women’s health. We tried to explain why infectious lactational mastitis is now considered to be the result of dysbiosis in the mammary ecosystem, which leads to the development of an inflammatory process, and why Streptococcus thermophilus (TCI633) shows promise in the fight against human ageing.

About the Authors

I. N. Zakharova
Russian Medical Academy of Continuous Professional Education
Russian Federation

 Dr. Sci. (Med.), Professor, Head of the Department of Pediatrics named after Academician G.N. Speransky

2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993, Russia 



A. E. Кuchina
Russian Medical Academy of Continuous Professional Education
Russian Federation

 Рostgraduate Student of the Department of Pediatrics named after Academician G.N. Speransky

2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993, Russia 



References

1. Houghteling P.D., Walker W.A. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J Pediatr Gastroenterol Nutr. 2015;60(3):294–307. https://doi.org/10.1097/MPG.0000000000000597.

2. Coker M.O., Laue H.E., Hoen A.G., Hilliard M., Dade E., Li Z. et al. Infant Feeding Alters the Longitudinal Impact of Birth Mode on the Development of the Gut Microbiota in the First Year of Life. Front Microbiol. 2021;12:642197. https://doi.org/10.3389/fmicb.2021.642197.

3. Ferretti P., Pasolli E., Tett A., Asnicar F., Gorfer V., Fedi S. et al. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe. 2018;24(1):133–145.e5. https://doi.org/10.1016/j.chom.2018.06.005.

4. Young V.B. the role of the microbiome in human health and disease: An introduction for clinicians. BMJ. 2017;356:j831. https://doi.org/10.1136/bmj.j831.

5. Bisyarina V.P. Children’s diseases with child care and anatomical and physiological features of childhood. 3rd ed. Moscow: Меdicine; 1984. (In Russ.)

6. Studenikin M.Ya. Book about children’s health. 4rd ed. Moscow: Меdicine; 1986. 240 р. (In Russ.)

7. Fernández L., Pannaraj P.S., Rautava S., Rodríguez J.M. the Microbiota of the Human Mammary Ecosystem. Front Cell Infect Microbiol. 2020;10:586667. https://doi.org/10.3389/fcimb.2020.586667.

8. Heikkila M.P., Saris P.E.J. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95(3):471–478. https://doi.org/10.1046/j.1365-2672.2003.02002.x.

9. Martín R., Langa S., Reviriego C., Jimínez E., Marín M.L., Xaus J. et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143(6):754–758. https://doi.org/10.1016/j.jpeds.2003.09.028.

10. Martín R., Jimínez E., Heilig H., Fernández L., Marín M.L., Zoetendal E.G., Rodríguez J.M. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol. 2009;75(4):965–969. https://doi.org/10.1128/AEM.02063-08.

11. Jost T., Lacroix C., Braegger C., Chassard C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev. 2015;73(7):426–437. https://doi.org/10.1093/nutrit/nuu016.

12. Damaceno Q.S., Souza J.P., Nicoli J.R., Paula R.L., Assis G.B., Figueiredo H.C. et al. Evaluation of Potential Probiotics Isolated from Human Milk and Colostrum. Probiotics Antimicrob Proteins. 2017;9(4):371–379. https://doi.org/10.1007/s12602-017-9270-1.

13. McGuire A.L., Colgrove J., Whitney S.N., Diaz C.M., Bustillos D., Versalovic J. Ethical, legal, and social considerations in conducting the Human Microbiome Project. Genome Res. 2008;18(12):1861–1864. https://doi.org/10.1101/gr.081653.108.

14. Fitzstevens J.L., Smith K.C., Hagadorn J.I., Caimano M.J., Matson A.P., Brownell E.A. Systematic Review of the Human Milk Microbiota. Nutr Clin Pract. 2017;32(3):354–364. https://doi.org/10.1177/0884533616670150.

15. Zimmermann P., Curtis N. Breast milk microbiota: a review of the factors that influence composition. J Infect. 2020;81(1):17–47. https://doi.org/10.1016/j.jinf.2020.01.023.

16. Murphy K., Curley D., O’Callaghan T.F., O’Shea C.A., Dempsey E.M., O’Toole P.W. et al. the Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: a Pilot Study. Sci Rep. 2017;7:40597. https://doi.org/10.1038/srep40597.

17. Li S.W., Watanabe K., Hsu C.C., Chao S.H., Yang Z.H., Lin Y.J. et al. Bacterial Composition and Diversity in Breast Milk Samples from Mothers Living in Taiwan and Mainland China. Front Microbiol. 2017;8:965. https://doi.org/10.3389/fmicb.2017.00965.

18. Sam Ma Z., Guan Q., Ye C., Zhang C., Foster J.A., Forney L.J. Network analysis suggests a potentially ‘evil’ alliance of opportunistic pathogens inhibited by a cooperative network in human milk bacterial communities. Sci Rep. 2015;5:8275. https://doi.org/10.1038/srep08275.

19. Stacy A., McNally L., Darch S.E., Brown S.P., Whiteley M. the biogeography of polymicrobial infection. Nat Rev Microbiol. 2016;14(2):93–105. https://doi.org/10.1038/nrmicro.2015.8.

20. Drago L., Toscano M., De Grandi R., Grossi E., Padovani E.M., Peroni D.G. Microbiota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: Italy versus Burundi. ISME J. 2017;11(4):875–884. https://doi.org/10.1038/ismej.2016.183.

21. Chassard C., de Wouters T., Lacroix C. Probiotics tailored to the infant: a window of opportunity. Curr Opin Biotechnol. 2014;26:141–147. https://doi.org/10.1016/j.copbio.2013.12.012.

22. Ramsay D.T., Kent J.C., Owens R.A., Hartmann P.E. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics. 2004;113(2):361–367. https://doi.org/10.1542/peds.113.2.361.

23. Lif Holgerson P., Harnevik L., Hernell O., Tanner A.C., Johansson I. Mode of birth delivery affects oral microbiota in infants. J Dent Res. 2011;90(10):1183–1188. https://doi.org/10.1177/0022034511418973.

24. Drell T., Štšepetova J., Simm J., Rull K., Aleksejeva A., Antson A. et al. The Influence of Different Maternal Microbial Communities on the Development of Infant Gut and Oral Microbiota. Sci Rep. 2017;7(1):9940. https://doi.org/10.1038/s41598-017-09278-y.

25. Hunt K.M., Foster J.A., Forney L.J., Schütte U.M., Beck D.L., Abdo Z. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE. 2011;6(6):e21313. https://doi.org/10.1371/journal.pone.0021313.

26. Williams J.E., Carrothers J.M., Lackey K.A., Beatty N.F., Brooker S.L., Peterson H.K. et al. Strong Multivariate Relations Exist Among Milk, Oral, and Fecal Microbiomes in Mother-Infant Dyads During the First Six Months Postpartum. J Nutr. 2019;149(6):902–914. https://doi.org/10.1093/jn/nxy299.

27. Kong H.H., Segre J.A. Skin microbiome: looking back to move forward. J Invest Dermatol. 2012;132(3):933–939. https://doi.org/10.1038/jid.2011.417.

28. Grice E.A., Kong H.H., Conlan S., Deming C.B., Davis J., Young A.C. et al. Topographical and temporal diversity of the human skin microbioime. Science. 2009;324(5931):1190–1192. https://doi.org/10.1126/science.1171700.

29. Zhang X., Mushajiang S., Luo B., Tian F., Ni Y., Yan W. the Composition and Concordance of Lactobacillus Populations of Infant Gut and the Corresponding Breast-Milk and Maternal Gut. Front Microbiol. 2020;11:597911. https://doi.org/10.3389/fmicb.2020.597911.

30. Cabrera-Rubio R., Collado M.C., Laitinen K., Salminen S., Isolauri E., Mira A. the human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96(3):544–555. https://doi.org/10.3945/ajcn.112.037382.

31. Rodríguez J.M. the origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr. 2014;5(6):779–784. https://doi.org/10.3945/an.114.007229.

32. Rodriguez H.M. Microbiota of human milk. Рediatrics. Consilium Medicum. 2016;(4):35–40. (In Russ.) Available at: https://cyberleninka.ru/article/n/mikrobiota-zhenskogo-moloka.

33. Khodayar-Pardo P., Mira-Pascual L., Collado M., Martínez-Costa C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J Perinatol. 2014;34(8):599–605. https://doi.org/10.1038/jp.2014.47.

34. Jeurink P.V., van Bergenhenegouwen J., Jiménez E., Knippels L.M., Fernández L., Garssen J. et al. Human milk: a source of more life than we imagine. Benef Microbes. 2013;4(1):17–30. https://doi.org/10.3920/BM2012.0040.

35. Torres J., Hu J., Seki A., Eisele C., Nair N., Huang R. et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut. 2020;69(1):42–51. https://doi.org/10.1136/gutjnl-2018-317855.

36. Urbaniak C., Cummins J., Brackstone M., Macklaim J.M., Gloor G.B., Baban C.K. et al. Microbiota of human breast tissue. Appl Environ Microbiol. 2014;80(10):3007–3014. https://doi.org/10.1128/AEM.00242-14.

37. Martín V., Maldonado-Barragán A., Moles L., Rodríguez-Baños M., Campo R.D., Fernández L. et al. Sharing of bacterial strains between breast milk and infant feces. J Hum Lact. 2012;28(1):36–44. https://doi.org/10.1177/0890334411424729.

38. Khine W.W.T., Rahayu E.S., See T.Y., Kuah S., Salminen S., Nakayama J., Lee Y.K. Indonesian children fecal microbiome from birth until weaning was different from microbiomes of their mothers. Gut Microbes. 2020;12(1):1761240. https://doi.org/10.1080/19490976.2020.1761240.

39. Corona-Cervantes K., García-González I., Villalobos-Flores L.E., HernándezQuiroz F., Piña-Escobedo A., Hoyo-Vadillo C. et al. Human milk microbiota associated with early colonization of the neonatal gut in Mexican newborns. PeerJ. 2020;8:e9205. https://doi.org/10.7717/peerj.9205.

40. Pannaraj P., Li F., Cerini C., Bender J., Yang S., Rollie A. et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171(7):647–654. https://doi.org/10.1001/jamapediatrics.2017.0378.

41. Asnicar F., Manara S., Zolfo M., Truong D.T., Scholz M., Armanini F. et al. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-LevelMetagenomic Profiling. mSystems. 2017;2(1):e00164–16. https://doi.org/10.1128/mSystems.00164-16.

42. Ding M., Qi C., Yang Z., Jiang S., Bi Y., Lai J., Sun J. Geographical location specific composition of cultured microbiota and Lactobacillus occurrence in human breast milk in China. Food Funct. 2019;10(2):554–564. https://doi.org/10.1039/C8FO02182A.

43. Martín R., Olivares M., Marín M.L., Fernández L., Xaus J., Rodríguez J.M. Probiotic potential of 3 Lactobacilli strains isolated from breast milk. J Hum Lact. 2005;21(1):8–17. https://doi.org/10.1177/0890334404272393.

44. Martín R., Jiménez E., Olivares M., Marín M.L., Fernández L., Xaus J., Rodríguez J.M. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int J Food Microbiol. 2006;112(1):35–43. https://doi.org/10.1016/j.ijfoodmicro.2006.06.011.

45. Zakharova I.N., Berezhnaya I.V., Sugyan N.G., Sannikova Т.N., Kuchina A.E., Sazanova Yu.O. What do we know today about Lactobacillus reuteri? Meditsinskiy Sovet. 2018;(2):163–169. (In Russ.) https://doi.org/10.21518/2079-701X-2018-2-163-169.

46. Dobson A., Cotter P.D., Ross R.P., Hill C. Bacteriocin production: a probiotic trait? Appl Environ Microbiol. 2012;78(1):1–6. https://doi.org/10.1128/AEM.05576-11.

47. Rogers L.A. the inhibiting effect of streptococcus lactis on lactobacillus bulgaricus. J Bacteriol. 1928;16(5):321–325. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC375033.

48. Beasley S.S., Saris P.E. Nisin-producing Lactococcus lactis strains isolated from human milk. Appl Environ Microbiol. 2004;70(8):5051–5053. https://doi.org/10.1128/AEM.70.8.5051-5053.2004.

49. Maldonado-Barragán A., Caballero-Guerrero B., Jiménez E., Jiménez-Díaz R., Ruiz-Barba J.L., Rodríguez J.M. Enterocin C, a class IIb bacteriocin produced by E. faecalis C901, a strain isolated from human colostrum. Int J Food Microbiol. 2009;133(1–2):105–112. https://doi.org/10.1016/j.ijfoodmicro.2009.05.008.

50. Jara S., Sánchez M., Vera R., Cofré J., Castro E. the inhibitory activity of Lactobacillus spp. isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin. Anaerobe. 2011;17(6):474–477. https://doi.org/10.1016/j.anaerobe.2011.07.008.

51. Flynn S., van Sinderen D., Thornton G.M., Holo H., Nes I.F., Collins J.K. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology (Reading). 2002;148(Pt 4):973–984. https://doi.org/10.1099/00221287-148-4-973.

52. Martín V., Maldonado-Barragán A., Jiménez E., Ruas-Madiedo P., Fernández L., Rodríguez J.M. Complete genome sequence of Streptococcus salivarius PS4, a strain isolated from human milk. J Bacteriol. 2012;194(16):4466–4467. https://doi.org/10.1128/JB.00896-12.

53. Obermajer T., Lipoglavšek L., Tompa G., Treven P., Lorbeg P.M., Matijašić B.B., Rogelj I. Colostrum of healthy Slovenian mothers: microbiota composition and bacteriocin gene prevalence. PLoS ONE. 2015;10(4):e0123324. https://doi.org/10.1371/journal.pone.0123324.

54. Abdi M., Lohrasbi V., Asadi A., Esghaei M., Jazi F.M., Rohani M., Talebi M. Interesting probiotic traits of mother’s milk Lactobacillus isolates; from bacteriocin to inflammatory bowel disease improvement. Microb Pathog. 2021;158:104998. https://doi.org/10.1016/j.micpath.2021.104998.

55. Nakano V., Ignacio A., Fernandes M.R., Fukugaiti M.H., Avila-Campos M.J. Intestinal Bacteroides and Parabacteroides species producing antagonistic substances. Microbiology. 2006;1:61–64. Available at: https://www.researchgate.net/publication/269630510_Intestinal_Bacteroides_and_Parabacteroides_species_producing_antagonistic_substances.

56. Kornienko E.A. Intestinal microbiota as a key factor in the formation of immunity and tolerance. Probiotics capabilities. Meditsinskiy Sovet. 2020;(10):92–100. (In Russ.) https://doi.org/10.21518/2079-701X-2020-10-92-100.

57. Tissier H. Traitement des infections intestinales par la méthode de la flore bactérienne de l’intestin. C. R. Soc. Biol. 1906;60:359–361.

58. Ventura M., Turroni F., Motherway M.O., MacSharry J., van Sinderen D. Hostmicrobe interactions that facilitate gut colonization by commensal bifidobacteria. Trends Microbiol. 2012;20(10):467–476. https://doi.org/10.1016/j.tim.2012.07.002.

59. Milani C., Mancabelli L., Lugli G.A., Duranti S., Turroni F., Ferrario C. et al. Exploring Vertical Transmission of Bifidobacteria from Mother to Child. Appl Environ Microbiol. 2015;81(20):7078–7087. https://doi.org/10.1128/AEM.02037-15.

60. Round J.L., Lee S.M., Li J., Tran G., Jabri B., Chatila T.A., Mazmanian S.K. the Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332(6032):974–977. https://doi.org/10.1126/science.1206095.

61. Safavi M., Farajian S., Kelishadi R., Mirlohi M., Hashemipour M. the effects of synbiotic supplementation on some cardio-metabolic risk factors in overweight and obese children: a randomized triple-masked controlled trial. Int J Food Sci Nutr. 2013;64(6):687–693. https://doi.org/10.3109/09637486.2013.775224.

62. Shao Y., Forster S.C., Tsaliki E., Vervier K., Strang A., Simpson N. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574(7776):117–121. https://doi.org/10.1038/s41586-019-1560-1.

63. Stearns J.C., Simioni J., Gunn E., McDonald H., Holloway A.C., Thabane L. et al. Intrapartum antibiotics for GBS prophylaxis alter colonization patterns in the early infant gut microbiome of low risk infants. Sci Rep. 2017;7(1):16527. https://doi.org/10.1038/s41598-017-16606-9.

64. Coker M.O., Hoen A.G., Dade E., Lundgren S., Li Z., Wong A.D. et al. Specific class of intrapartum antibiotics relates to maturation of the infant gut microbiota: a prospective cohort study. BJOG. 2020;127(2):217–227. https://doi.org/10.1111/1471-0528.15799.

65. Tonon K.M., Morais T.B., Taddei C.R., Araújo-Filho H.B., Abrão A., Miranda A., de Morais M.B. Gut microbiota comparison of vaginally and cesarean born infants exclusively breastfed by mothers secreting α1-2 fucosylated oligosaccharides in breast milk. PLoS ONE. 2021;16(2):e0246839. https://doi.org/10.1371/journal.pone.0246839.

66. Amir L.H. Academy of Breastfeeding Medicine Protocol Committee. ABM clinical protocol #4: Mastitis, revised March 2014. Breastfeed Med. 2014;9(5):239–243. https://doi.org/10.1089/bfm.2014.9984.

67. Savelyeva G.M., Sukhoi G.T., Serov V.N., Radzinsky V.E. (eds.). Obstetrics: a national guide. 2rd ed. Moscow: GEOTAR-Media; 2019. 1080 р. (In Russ.) Available at: http://www.ma.cfuv.ru/docs/248191/%D1%81%D0%B0%D0%B2%D0%B5%D0%BB%D1%8C%D0%B5%D0%B2%D0%B0.pdf.

68. Rodriguez J. Mastitis in women: a new look at the old problem. Meditsinskiy Sovet. 2017;(1):34–44. (In Russ.) https://doi.org/10.21518/2079-701X-2017-1-34-44.

69. Patel S.H., Vaidya Y.H., Patel R.J., Pandit R.J., Joshi C.G., Kunjadiya A.P. Culture independent assessment of human milk microbial community in lactational mastitis. Sci Rep. 2017;7(1):7804. https://doi.org/10.1038/s41598-017-08451-7.

70. Delgado S., Arroyo R., Jiménez E., Marín M.L., del Campo R., Fernández L., Rodríguez J.M. Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: potential virulence traits and resistance to antibiotics. BMC Microbiol. 2009;9:82. https://doi.org/10.1186/1471-2180-9-82.

71. Arroyo R., Martín V., Maldonado A., Jiménez E., Fernández L., Rodríguez J.M. Treatment of Infectious Mastitis during Lactation: Antibiotics versus Oral Administration of Lactobacilli Isolated from Breast Milk. Clin Infect Dis. 2010;50(12):1551–1558. https://doi.org/10.1086/652763.

72. Hurtado J.A., Maldonado-Lobón J.A., Díaz-Ropero M.P., Flores-Rojas K., Uberos J., Leante, J. L. et al. Oral Administration to Nursing Women of Lactobacillus fermentum CECT5716 Prevents Lactational Mastitis Development: a Randomized Controlled Trial. Breastfeed Med. 2017;12(4):202–209. https://doi.org/10.1089/bfm.2016.0173.

73. Cárdenas N., Laiño J.E., Delgado S., Jiménez E., Juárez del Valle M., Savoy de Giori G. et al. Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Appl Microbiol Biotechnol. 2015;99(10):4343–4353. https://doi.org/10.1007/s00253-015-6429-0.

74. Kang M.S., Lim H.S., Oh J.S., Lim Y.J., Wuertz-Kozak K., Harro J.M. et al. Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus. Pathog Dis. 2017;75(2). https://doi.org/10.1093/femspd/ftx009.

75. Olivares M., Díaz-Ropero M.P., Sierra S., Lara-Villoslada F., Fonollá J., Navas M. et al. Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition. 2007;23(3):254–260. https://doi.org/10.1016/j.nut.2007.01.004.

76. Zakharova I.N., Kuchina А.Е., Berezhnaya I.V. New trends in preserving breastfeeding by use of probiotics to prevent mastitis and lactostasis in breastfeeding women. Meditsinskiy Sovet. 2019;(17):17–23. (In Russ.) https://doi.org/10.21518/2079-701X-2019-17-17-23.

77. Díaz-Ropero M.P., Martín R., Sierra S., Lara-Villoslada F., Rodríguez J.M., Xaus J., Olivares M. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J Appl Microbiol. 2007;102(2):337–343. https://doi.org/10.1111/j.1365-2672.2006.03102.x.

78. Jahanfar S., Ng C.J., Teng C.L. Antibiotics for mastitis in breastfeeding women. Cochrane Database Syst Rev. 2013;(2):CD005458. https://doi.org/10.1002/14651858.CD005458.pub3.

79. de Moreno de LeBlanc A., Matar C., Thériault C., Perdigón G. Effects of milk fermented by Lactobacillus helveticus R389 on immune cells associated to mammary glands in normal and a breast cancer model. Immunobiology. 2005;210(5):349–358. https://doi.org/10.1016/j.imbio.2005.05.024

80. Maroof H., Hassan Z.M., Mobarez A.M., Mohamadabadi M.A. Lactobacillus acidophilus could modulate the immune response against breast cancer in murine model. J Clin Immunol. 2012;32(6):1353–1359. https://doi.org/10.1007/s10875-012-9708-x.

81. Chan A.A., Bashir M., Rivas M.N., Duvall K., Sieling P.A., Pieber T.R. et al. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci Rep. 2016;6:28061. https://doi.org/10.1038/srep28061.

82. Liu C., Tseng Y.P., Chan L.P., Liang C.H. the potential of Streptococcus thermophiles (TCI633) in the anti-aging. J Cosmet Dermatol. 2021. https://doi.org/10.1111/jocd.14445.


Review

For citations:


Zakharova IN, Кuchina AE. Breast milk microbiota (concept, sources, role of bacteria for a child and mother). Meditsinskiy sovet = Medical Council. 2022;(1):27-35. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-1-27-35

Views: 681


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)