Place of nebulizer therapy in the treatment of bronchial asthma in children
https://doi.org/10.21518/2079-701X-2022-16-1-82-87
Abstract
The review article presents an analysis of the data of foreign and domestic researchers characterizing the effectiveness of nebulizer therapy for bronchial asthma in children. The paper considers new data comparing the effectiveness of aerosol delivery devices. The advantage of inhalation therapy, which determines its widespread use in childhood, is its rapid delivery to the respiratory tract, high local and low systemic concentrations of the drug in target organs. Difficulties in observing the correct inhalation technique due to the difficulty of synchronizing inhalation and drug delivery, especially in young children, remain an urgent problem in the practice of treating chronic bronchopulmonary diseases, which leads to a severe and uncontrolled course, disability and adverse outcomes. The main disadvantage of ultrasonic nebulizers is the inactivation of suspensions, antibiotics and other drugs. Widely used jet nebulizers create noise during inhalation, have a large residual volume in the nebulizer chamber. In this regard, the improvement of delivery forms continues, taking into account the anatomical and physiological characteristics of the respiratory organs, the age of patients and comorbid conditions. The characteristics of the optimal inhaler include simplicity and ease of use, reliability, the possibility of effective inhalation of various drugs in combination with economical consumption. From this point of view, one of the universal means of transporting aerosols is membrane or electronic mesh (mesh) nebulizers, which provide excellent regional drug deposition in all age groups of children. The rapid achievement of clinical effect, compactness, mobility expand the possibilities of using mesh nebulizers at all levels of medical care.
About the Author
N. L. PotapovaRussian Federation
Cand. Sci. (Med.), Head of the Department of Outpatient Pediatrics with Medical Rehabilitation Course
39a, Gorkiy St., Chita, 672000, Russia
References
1. Ferro T.J., Sundaresan A.S., Pitcavage J.M., Ivanova J.I., Schmerold L., Ariely R. et al. Clinical burden of asynchrony in patients with asthma when using metered-dose inhalers for control. Allergy Asthma Proc. 2019;40(1):21–31. https://doi.org/10.2500/aap.2019.40.4192.
2. Silva C.P.D., Cordeiro J.S.A., Britto M.C.A., Bezerra P.G.M., Andrade L.B. Peak inspiratory flow in children and adolescents with asthma using dry powder inhalers: a cross-sectional study. J Bras Pneumol. 2021;47(3):e20200473. https://doi.org/10.36416/1806-3756/e20200473.
3. Kolosova N.G., Geppe N.A. Inhalation therapy in pediatrics: from basic science to practical use. Pediatrics. Consilium Medicum. 2018;(3):66–68. (In Russ.) Available at: https://cyberleninka.ru/article/n/ingalyatsionnaya-terapiya-vpediatrii-ot-fundamentalnoy-nauki-k-prakticheskomu-ispolzovaniyu.
4. McCarthy S.D., González H.E., Higgins B.D. Future trends in nebulized therapies for pulmonary disease. J Pers Med. 2020;10(2):37. https://doi.org/10.3390/jpm10020037.
5. Leshchenko I.V., Evdokimov V.E. The place of nebulizer therapy in clinical practice. Farmateka. 2020;(5):29–37. (In Russ.) https://doi.org/10.18565/pharmateca.2020.5.29-37.
6. Sá R.C., Zeman K.L., Bennett W.D., Prisk G.K., Darquenne Ch. Regional Ventilation Is the Main Determinant of Alveolar Deposition of Coarse Particles in the Supine Healthy Human Lung During Tidal Breathing. J Aerosol Med Pulm Drug Deliv. 2017;30(5):322–331. https://doi.org/10.1089/jamp.2016.1336.
7. Murphy K.R., Hong J.G., Wandalsen G., Larenas-Linnemann D., El Beleidy A., Zaytseva O.V., Pedersen S.E. Nebulized Inhaled Corticosteroids in Asthma Treatment in Children 5 Years or Younger: A Systematic Review and Global Expert Analysis. J Allergy Clin Immunol Pract. 2020;8(6):1815–1827. https://doi.org/10.1016/j.jaip.2020.01.042.
8. Castro-Rodriguez J.A., Pincheira M.A., Escobar-Serna D.P., Sossa-Briceño M.P., Rodriguez-Martinez C.E. Adding nebulized corticosteroids to systemic corticosteroids for acute asthma in children: A systematic review with meta-analysis. Pediatr Pulmonol. 2020;55(10):2508–2517. https://doi.org/10.1002/ppul.24956.
9. Direkwattanashai Ch., Aksilp Ch., Chatchatee P., Jirapongsananuruk O., Kamalaporn H., Kamshaisatian W. et al. Practical considerations of nebulized corticosteroid in children with acute asthmatic exacerbation: consensus. Asian Pac J Allergy Immunol. 2021;39(3):168–176. https://doi.org/10.12932/AP-170918-0407.
10. Li Ch., Liu Zh. Effect of budesonide on hospitalization rates among children with acute asthma attending paediatric emergency department: a systematic review and meta-analysis. World J Pediatr. 2021;17(2):152–163. https://doi.org/10.1007/s12519-020-00403-y.
11. Surovenko T.N., Glushkova E.F. Therapy and control of bronchial asthma in children and adolescents. Meditsinskiy Sovet. 2020;(10):101–107. (In Russ.) https://doi.org/10.21518/2079-701X-2020-10-101-107.
12. Nanda A., Russell A.F., Bingemann Th.A. Pharmacology Update: Emergency and Controller Medications for Treatment of Asthma. NASN Sch Nurse. 2022;37(1):31–35. https://doi.org/10.1177/1942602x211036933.
13. Soyer Ö., Kahveci M., Büyüktiryaki B., Arık Yılmaz E., Karaatmaca B., Esenboğa S. et al. Mesh nebulizer is as effective as jet nebulizer in clinical practice of acute asthma in children. Turk J Med Sci. 2019;49(4):1008–1013. https://doi.org/10.3906/sag-1812-133.
14. Iramain R., Castro-Rodriguez J.A., Jara A., Cardozo L., Bogado N., Morinigo R., De Jesús R. Salbutamol and ipratropium by inhaler is superior to nebulizer in children with severe acute asthma exacerbation: Randomized clinical trial. Pediatr Pulmonol. 2019;54(4):372–377. https://doi.org/10.1002/ppul.24244.
15. Montoya Segnini J., Bocanegra Evans H., Castillo L. Flow Recirculation in Cartilaginous Ring Cavities of Human Trachea Model. J Aerosol Med Pulm Drug Deliv. 2018;31(6):331–338. https://doi.org/10.1089/jamp.2017.1435.
16. Corcoran T. E. Measurements of deposited aerosol dose in infants and small children. Ann Transl Med. 2021;9(7):595. https://doi.org/10.21037/atm-20-2045.
17. Wang Y., Li J., Leavey A., O’Neil C., Babcock H.M., Biswas P. Comparative Study on the Size Distributions, Respiratory Deposition, and Transport of Particles Generated from Commonly Used Medical Nebulizers. J Aerosol Med Pulm Drug Deliv. 2017;30(2):132–140. https://doi.org/10.1089/jamp.2016.1340.
18. Darquenne Ch. Deposition Mechanisms. J Aerosol Med Pulm Drug Deliv. 2020;33(4):181–185. https://doi.org/10.1089/jamp.2020.29029.cd.
19. Sá R.C., Zeman K.L., Bennett W.D., Prisk G.K., Darquenne Ch. Effect of Posture on Regional Deposition of Coarse Particles in the Healthy Human Lung. J Aerosol Med Pulm Drug Deliv. 2015;28(6):423–431. https://doi.org/10.1089/jamp.2014.1189.
20. Lin H.-L., Fink J.B., Ge H. Aerosol delivery via invasive ventilation: a narrative review. Ann Transl Med. 2021;9(7):588. https://doi.org/10.21037/atm-20-5665.
21. Montesantos S., Katz I., Venegas J., Pichelin M., Caillibotte G. The effect of disease and respiration on airway shape in patients with moderate persistent asthma. PLoS ONE. 2017;12(7):e0182052. https://doi.org/10.1371/journal.pone.0182052.
22. Carroll R.D., Magnussen J.S., Berend N., Salome C.M., King G.G. Greater parallel heterogeneity of airway narrowing and airway closure in asthma measured by high-resolution CTJ. Thorax. 2015;70(12):1163–1170. https://doi.org/10.1136/thoraxjnl-2014-206387.
23. Cadman R.V., Lemanske R.F. Jr., Evans M.D., Jackson D.J., Gern J.E., Sorkness R.L., Fain S.B. Pulmonary 3He magnetic resonance imaging of childhood asthma. J Allergy Clin Immunol. 2013;131(2):369–76.e1-5. https://doi.org/10.1016/j.jaci.2012.10.032.
24. Kim Ch.S. Physiological Factors Affecting Lung Deposition. J Aerosol Med Pulm Drug Deliv. 2021;34(3):147–154. https://doi.org/10.1089/jamp.2021.29036.csk.
25. Nuttall A.G., Beardsmore C.S., Gailard E.A. Ventilation heterogeneity in children with severe asthma. Eur J Pediatr. 2021;180(11):3399–3404. https://doi.org/10.1007/s00431-021-04101-3.
26. Racette Ch., Lu Z., Kowalik K., Cheng O., Bendiak G., Amin R. et al. Lung clearance index is elevated in young children with symptom-controlled asthma. Health Sci Rep. 2018;1(8):e58. https://doi.org/10.1002/hsr2.58.
27. Nuttall A.G., Velásquez W., Beardsmore C.S., Gailard E.A. Lung clearance index: assessment and utility in children with asthma. Eur Respir Rev. 2019;28(154):190046. https://doi.org/10.1183/16000617.0046-2019.
28. Hyang Lee D.D., Daniela Cardinale D., Terakosolphan W., Sornsute A., Radhakrishnan P., Coppel J. et al. Fluticasone Particles Bind to Motile Respiratory Cilia: A Mechanism for Enhanced Lung and Systemic Exposure? J Aerosol Med Pulm Drug Deliv. 2021;34(3):181–188. https://doi.org/10.1089/jamp.2020.1598.
29. Axelsson I., Naumburg E., Prietsch S.O., Zhang L. Inhaled corticosteroids in children with persistent asthma: effects of different drugs and delivery devices on growth. Cochrane Database Syst Rev. 2019;6(6):CD010126. Available at: https://pubmed.ncbi.nlm.nih.gov/31194879/.
30. Wang Q., Liu Y., ZhuZh., Hu J., Li L., Wang Sh. A comparison of the delivery of inhaled drugs by jet nebulizer and vibrating mesh nebulizer using dualsource dual-energy computed tomography in rabbits: a preliminary in vivo study. Ann Transl Med. 2020;8(17):1072. https://doi.org/10.21037/atm-20-1584.
31. Niazi S., Philp L.K., Spann K., Johnson G.R. Utility of Three Nebulizers in Investigating the Infectivity of Airborne Viruses. Appl Environ Microbiol. 2021;87(16):e0049721. https://doi.org/10.1128/AEM.00497-21.
32. Velasco C.J., Berlinski A. Albuterol Delivery Efficiency in a Pediatric Model of Noninvasive Ventilation With Double-Limb. Respir Care. 2018;63(2):141–146. https://doi.org/10.4187/respcare.05833.
33. Stein S.W., Thiel Ch.G. The History of Therapeutic Aerosols: A Chronological Review. J Aerosol Med Pulm Drug Deliv. 2017;30(1):20–41. https://doi.org/10.1089/jamp.2016.1297.
34. Eain M.G., Joyce M., O’Sullivan A., McGrath J.A., Mac Loughlin R. An in vitro investigation into the release of fugitive medical aerosols into the environment during manual ventilation. J Hosp Infect. 2021;108:135–141. https://doi.org/10.1016/j.jhin.2020.11.029.
35. Chang K.H., Moon S., Yoo S.K., Park B.J., Nam K.C. Aerosol Delivery of Dornase Alfa Generated by Jet and Mesh Nebulizers. Pharmaceutics. 2020;12(8):721. https://doi.org/10.3390/pharmaceutics12080721.
36. Ari A., Fink J.B. Quantifying Delivered Dose with Jet and Mesh Nebulizers during Spontaneous Breathing, Noninvasive Ventilation, and Mechanical Ventilation in a Simulated Pediatric Lung Model with Exhaled Humidity. Pharmaceutics. 2021;13(8):1179. https://doi.org/10.3390/pharmaceutics13081179.
37. Ari A., Huang R., Shockley C.M., Luckett P.M., Moody G.B. Clinical Efficacy of Vibrating Mesh and Jet Nebulizers With Different Interfaces in Pediatric Subjects With Asthma. Respir Care. 2020;65(10):1451–1463. https://doi.org/10.4187/respcare.07538.
38. Murayama N., Murayama K. Comparison of the Clinical Efficacy of Salbutamol with Jet and Mesh Nebulizers in Asthmatic Children. Pulm Med. 2018;2018:1648652. https://doi.org/10.1155/2018/1648652.
39. Moustafa O.F., Hansy M.H.E., Hallag M.A., Fink J.B., Dailey P., Rabea H., Abdelrahim M.E.A. Clinical outcome associated with the use of different inhalation method with and without humidification in asthmatic mechanically ventilated patients. Pulm Pharmacol Ther. 2017;45:40–46. https://doi.org/10.1016/j.pupt.2017.04.007.
40. Arkhipov V.V., Lazareva N.B. Principles of adequate inhalation. Prakticheskaya pulʹmonologiya. 2018;(3):66–74. (In Russ.) Available at: http://www.atmosphere-ph.ru/modules/Magazines/articles//pulmo/pp_3_2018_66.pdf.
41. O’Toole C., Joyce M., McGrath J.A., O’Sullivan A., Byrne M.A., MacLoughlin R. Fugitive aerosols in the intensive care unit: a narrative review. Ann Transl Med. 2021;9(7):592. https://doi.org/10.21037/atm-20-2280.
42. Mizernitsky Yu.L. New opportunities for nebulizer therapy in children. Meditsinskiy Sovet. 2019;(2):87–89. (In Russ.) https://doi.org/10.21518/2079-701X-2019-2-87-89.
43. Saeed H., Mohsen M., Eldin A.S., Elberry A.A., Hussein R.R., Rabea H., Abdelrahim M.E. Effects of Fill Volume and Humidification on Aerosol Delivery During Single-Limb Noninvasive Ventilation. Respir Care. 2018;63(11):1370–1378. https://doi.org/10.4187/respcare.06022.
44. Chang K.H., Moon S.H., Oh J.Y., Yoon Y., Gu N., Lim Ch. et al. Comparison of Salbutamol Delivery Efficiency for Jet versus Mesh Nebulizer Using Mice. Pharmaceutics. 2019;11(4):192. https://doi.org/10.3390/pharmaceutics11040192.
45. Hatley R.H., Byrne S.M. Variability in delivered dose and respirable delivered dose from nebulizers: are current regulatory testing guidelines sufficient to produce meaningful information? Med Devices (Auckl). 2017;10:17–28. https://doi.org/10.2147/mder.s125104.
46. Ari A. Effect of nebulizer type, delivery interface, and flow rate on aerosol drug delivery to spontaneously breathing pediatric and infant lung models. Pediatr Pulmonol. 2019;54(11):1735–1741. https://doi.org/10.1002/ppul.24449.
47. Sayed N.E., Abdelrahman M.A., Abdelrahim M.E.A. Effect of functional principle, delivery technique, and connection used on aerosol delivery from different nebulizers: An in-vitro study. Pulm Pharmacol Ther. 2021;70:102054. https://doi.org/10.1016/j.pupt.2021.102054.
48. Ari A. A path to successful patient out comes through aerosol drug delivery to children: a narrative review. Ann Transl Med. 2021;9(7):593. https://doi.org/10.21037/atm-20-1682.
49. Tseng H.Y., Lin H.L., Chiang H.S. In Vitro Evaluation of Aerosol Delivery by Hand-Held Mesh Nebulizers in an Adult Spontaneous Breathing Lung Model. J Aerosol Med Pulm Drug Deliv. 2021. https://doi.org/10.1089/jamp.2021.0010.
Review
For citations:
Potapova NL. Place of nebulizer therapy in the treatment of bronchial asthma in children. Meditsinskiy sovet = Medical Council. 2022;(1):82-87. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-1-82-87