Preview

Медицинский Совет

Расширенный поиск

Мужское бесплодие, связанное с окислительным стрессом сперматозоидов: патогенез и терапевтический подход

https://doi.org/10.21518/2079-701X-2022-16-5-46-53

Полный текст:

Аннотация

Бесплодие определяется как неспособность пары забеременеть после по крайней мере одного года регулярной половой жизни. Это состояние стало глобальной проблемой здравоохранения, затрагивающей примерно 187 млн пар во всем мире, и около половины случаев связаны с мужскими факторами. Существует несколько внешних и внутренних факторов бесплодия. Один из основных – окислительный стресс, который является распространенной причиной нескольких состояний, связанных с  мужским бесплодием. Высокие уровни активных форм кислорода (АФК) ухудшают качество спермы, уменьшая подвижность и увеличивая повреждение ДНК, белка и липидов. Если разрывы в нитях не восстанавливаются, клетка подвергается апоптозу, программируемой гибели. Комплексные антиоксиданты считаются эффективными для улучшения параметров мужской фертильности благодаря синергическим эффектам различных компонентов. Большинство из них действуют путем снижения концентрации АФК, тем самым улучшая качество спермы. Кроме того, в представленном обзоре рассмотрены другие природные молекулы – мио-инозитол и D-хиро-инозитол, которые улучшают качество спермы. В сперматозоидах они участвует во многих сигнальных механизмах, которые регулируют уровни цитоплазматического кальция, емкость и функцию митохондрий. С другой стороны, D-хиро-инозитол участвует в подавлении стероидогенного фермента ароматазы, тем самым увеличивая уровень тестостерона. В этом обзоре мы анализируем процессы, связанные с окислительным стрессом в мужской фертильности, и механизмы действия различных молекул, а также рассматриваем возможности коррекции различных нарушений мужской репродуктивной сферы.

Об авторе

Р. И. Овчинников
Российско-финский центр репродуктивной медицины «СканФерт»
Россия

Овчинников Руслан Игоревич, к.м.н., директор Департамента развития андрологии, руководитель отделения андрологии и урологии

119192, Москва, Мичуринский пр-т, д. 7 



Список литературы

1. Irvine D.S. Epidemiology and aetiology of male infertility. Hum Reprod. 1998;13(1 Suppl.):33–44. https://doi.org/10.1093/humrep/13.suppl_1.33.

2. Agarwal A., Majzoub A., Parekh N., Henkel R. A Schematic Overview of the Current Status of Male Infertility Practice. World J Mens Health. 2020;38(3):308–322. https://doi.org/10.5534/wjmh.190068.

3. Rashki Ghaleno L., Alizadeh A., Drevet J.R., Shahverdi A., Valojerdi M.R. Oxidation of Sperm DNA and Male Infertility. Antioxidants (Basel). 2021;10(1):97. https://doi.org/10.3390/antiox10010097.

4. Durairajanayagam D. Lifestyle causes of male infertility. Arab J Urol. 2018;16(1):10–20. https://doi.org/10.1016/j.aju.2017.12.004.

5. Plaseska-Karanfilska D., Noveski P., Plaseski T., Maleva I., Madjunkova S., Moneva Z. Genetic causes of male infertility. Balkan J Med Genet. 2012;15(Suppl.):31–34. https://doi.org/10.2478/v10034-012-0015-x.

6. Anifandis G., Katsanaki K., Lagodonti G., Messini C., Simopoulou M., Dafopoulos K., Daponte A. The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation. Int J Environ Res Public Health. 2018;15(6):1117. https://doi.org/10.3390/ijerph15061117.

7. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril. 1992;57(2):409–416. https://doi.org/10.1016/s0015-0282(16)54855-9.

8. Tremellen K. Oxidative stress and male infertility – a clinical perspective. Hum Reprod Update. 2008;14(3):243–258. https://doi.org/10.1093/humupd/dmn004.

9. Wu P.Y., Scarlata E., O’Flaherty C. Long-Term Adverse Effects of Oxidative Stress on Rat Epididymis and Spermatozoa. Antioxidants (Basel). 2020;9(2):170. https://doi.org/10.3390/antiox9020170.

10. Arafa M., Agarwal A., Majzoub A., Panner Selvam M.K., Baskaran S. et al. Efficacy of Antioxidant Supplementation on Conventional and Advanced Sperm Function Tests in Patients with Idiopathic Male Infertility. Antioxidants (Basel). 2020;9(3):219. https://doi.org/10.3390/antiox9030219.

11. Calogero A.E., Condorelli R.A., Russo G.I., La Vignera S. Conservative Nonhormonal Options for the Treatment of Male Infertility: Antibiotics, Anti-Inflammatory Drugs, and Antioxidants. Biomed Res Int. 2017;4650182. https://doi.org/10.1155/2017/4650182.

12. Walczak-Jedrzejowska R., Wolski J.K., Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male fertility. Cent European J Urol. 2013;66(1):60–67. https://doi.org/10.5173/ceju.2013.01.art19.

13. De Luca M.N., Colone M., Gambioli R., Stringaro A., Unfer V. Oxidative Stress and Male Fertility: Role of Antioxidants and Inositols. Antioxidants (Basel). 2021;10(8):1283. https://doi.org/10.3390/antiox10081283.

14. Agarwal A., Rana M., Qiu E., AlBunni H., Bui A.D., Henkel R. Role of oxidative stress, infection and inflammation in male infertility. Andrologia. 2018;50(11):e13126. https://doi.org/10.1111/and.13126.

15. Sanocka D., Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol. 2004;2:12. https://doi.org/10.1186/1477-7827-2-12.

16. Cocuzza M., Sikka S.C., Athayde K.S., Agarwal A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol. 2007;33(5):603–621. https://doi.org/10.1590/s1677-55382007000500002.

17. Овчинников Р.И., Гамидов С.И., Попова А.Ю., Ижбаев С.Х. Мужское бесплодие: до и после эпохи коронавируса SARS-CoV-2. Медицинский совет. 2020;(13):179–187. https://doi.org/10.21518/2079-701X-2020-13-179-187.

18. Young S.S., Eskenazi B., Marchetti F.M., Block G., Wyrobek A.J. The association of folate, zinc and antioxidant intake with sperm aneuploidy in healthy non-smoking men. Hum Reprod. 2008;23(5):1014–1022. https://doi.org/10.1093/humrep/den036.

19. Anderson R.A., Sharpe R.M. Regulation of inhibin production in the human male and its clinical applications. Int J Androl. 2000;23(3):136–144. https://doi.org/10.1046/j.1365-2605.2000.00229.x.

20. Irani M., Amirian M., Sadeghi R., Lez J.L., Latifnejad Roudsari R. The Effect of Folate and Folate Plus Zinc Supplementation on Endocrine Parameters and Sperm Characteristics in Sub-Fertile Men: A Systematic Review and Meta-Analysis. Urol J. 2017;14(5):4069–4078. Available at: https://pubmed.ncbi.nlm.nih.gov/28853101.

21. Jeulin C., Lewin L.M. Role of free L-carnitine and acetyl-L-carnitine in post-gonadal maturation of mammalian spermatozoa. Hum Reprod Update. 1996;2(2):87–102. https://doi.org/10.1093/humupd/2.2.87.

22. Bahl J.J., Bressler R. The pharmacology of carnitine. Annu Rev Pharmacol Toxicol. 1987;27:257–277. https://doi.org/10.1146/annurev.pa.27.040187.001353.

23. Lenzi A., Sgrò P., Salacone P., Paoli D., Gilio B., Lombardo F. et al. A placebo-controlled double-blind randomized trial of the use of combined l-carnitine and l-acetyl-carnitine treatment in men with asthenozoospermia. Fertil Steril. 2004;81(6):1578–1584. https://doi.org/10.1016/j.fertnstert.2003.10.034.

24. Garolla A., Maiorino M., Roverato A., Roveri A., Ursini F., Foresta C. Oral carnitine supplementation increases sperm motility in asthenozoospermic men with normal sperm phospholipid hydroperoxide glutathione peroxidase levels. Fertil Steril. 2005;83(2):355–361. https://doi.org/10.1016/j.fertnstert.2004.10.010.

25. Miroueh A. Effect of arginine on oligospermia. Fertil Steril. 1970;21(3):217–219. https://doi.org/10.1016/S0015-0282(16)37384-8.

26. Zini A., De Lamirande E., Gagnon C. Low levels of nitric oxide promote human sperm capacitation in vitro. J Androl. 1995;16(5):424–431. https://doi.org/10.1002/j.1939-4640.1995.tb00558.x.

27. Srivastava S., Desai P., Coutinho E., Govil G. Mechanism of action of L-arginine on the vitality of spermatozoa is primarily through increased biosynthesis of nitric oxide. Biol Reprod. 2006;74(5):954–958. https://doi.org/10.1095/biolreprod.105.046896.

28. Stanislavov R., Nikolova V., Rohdewald P. Improvement of seminal parameters with Prelox: a randomized, double-blind, placebo-controlled, cross-over trial. Phytother Res. 2009;23(3):297–302. https://doi.org/10.1002/ptr.2592.

29. Sueishi Y., Hori M., Ishikawa M., Matsu-Ura K., Kamogawa E., Honda Y. et al. Scavenging rate constants of hydrophilic antioxidants against multiple reactive oxygen species. J Clin Biochem Nutr. 2014;54(2):67–74. https://doi.org/10.3164/jcbn.13-53.

30. Barekat F., Tavalaee M., Deemeh M.R., Bahreinian M., Azadi L., Abbasi H. et al. A Preliminary Study: N-acetyl-L-cysteine Improves Semen Quality following Varicocelectomy. Int J Fertil Steril. 2016;10(1):120–126. https://doi.org/10.22074/ijfs.2016.4777.

31. Wolfram T., Schwarz M., Reuß M., Lossow K., Ost M., Klaus S. et al. N-Acetylcysteine as Modulator of the Essential Trace Elements Copper and Zinc. Antioxidants (Basel). 2020;9(11):1117. https://doi.org/10.3390/antiox9111117.

32. Omu A.E., Al-Azemi M.K., Kehinde E.O., Anim J.T., Oriowo M.A., Mathew T.C. Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med Princ Pract. 2008;17(2):108–116. https://doi.org/10.1159/000112963.

33. Tikkiwal M., Ajmera R.L., Mathur N.K. Effect of zinc administration on seminal zinc and fertility of oligospermic males. Indian J Physiol Pharmacol. 1987;31(1):30–34. Available at: https://pubmed.ncbi.nlm.nih.gov/3666872/.

34. Omu A.E., Al-Qattan F., Al-Abdul-Hadi F.M., Fatinikun M.T., Fernandes S. Seminal immune response in infertile men with leukocytospermia: effect on antioxidant activity. Eur J Obstet Gynecol Reprod Biol. 1999;86(2):195–202. https://doi.org/10.1016/s0301-2115(99)00073-1.

35. Roveri A., Casasco A., Maiorino M., Dalan P., Calligaro A., Ursini F. Phospholipid hydroperoxide glutathione peroxidase of rat testis. Gonadotropin dependence and immunocytochemical identification. J Biol Chem. 1992;267(9):6142–6146. Available at: https://www.jbc.org/article/S0021-9258(18)42673-7/pdf.

36. Alvarez J.G., Storey B.T. Lipid peroxidation and the reactions of superoxide and hydrogen peroxide in mouse spermatozoa. Biol Reprod. 1984;30(4):833–841. https://doi.org/10.1095/biolreprod30.4.833.

37. Ursini F., Heim S., Kiess M., Maiorino M., Roveri A., Wissing J., Flohé L. Dual function of the selenoprotein PHGPx during sperm maturation. Science. 1999;285(5432):1393–1396. https://doi.org/10.1126/science.285.5432.1393.

38. Noack-Füller G., De Beer C., Seibert H. Cadmium, lead, selenium, and zinc in semen of occupationally unexposed men. Andrologia. 1993;25(1):7–12. https://doi.org/10.1111/j.1439-0272.1993.tb02674.x.

39. Burton G.W., Traber M.G. Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr. 1990;10:357–382. https://doi.org/10.1146/annurev.nu.10.070190.002041.

40. Safarinejad M.R., Safarinejad S. Efficacy of selenium and/or N-acetylcysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study. J Urol. 2009;181(2):741–751. https://doi.org/10.1016/j.juro.2008.10.015.

41. Ahsan U., Kamran Z., Raza I., Ahmad S., Babar W., Riaz M.H., Iqbal Z. Role of selenium in male reproduction – a review. Anim Reprod Sci. 2014;146(1–2):55–62. https://doi.org/10.1016/j.anireprosci.2014.01.009.

42. Thérond P., Auger J., Legrand A., Jouannet P. alpha-Tocopherol in human spermatozoa and seminal plasma: relationships with motility, antioxidant enzymes and leukocytes. Mol Hum Reprod. 1996;2(10):739–744. https://doi.org/10.1093/molehr/2.10.739.

43. Omu A.E., Fatinikun T., Mannazhath N., Abraham S. Significance of simultaneous determination of serum and seminal plasma alpha-tocopherol and retinol in infertile men by high-performance liquid chromatography. Andrologia. 1999;31(6):347–354. https://doi.org/10.1046/j.1439-0272.1999.00296.x.

44. Suleiman S.A., Ali M.E., Zaki Z.M., el-Malik E.M., Nasr M.A. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17(5):530–537. https://doi.org/10.1002/j.1939-4640.1996.tb01830.x.

45. Kodama H., Yamaguchi R., Fukuda J., Kasai H., Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68(3):519–524. https://doi.org/10.1016/s0015-0282(97)00236-7.

46. Comhaire F.H., Christophe A.B., Zalata A.A., Dhooge W.S., Mahmoud A.M., Depuydt C.E. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids. 2000;63(3):159–165. https://doi.org/10.1054/plef.2000.0174.

47. Keskes-Ammar L., Feki-Chakroun N., Rebai T., Sahnoun Z., Ghozzi H., Hammami S. et al. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch Androl. 2003;49(2):83–94. https://doi.org/10.1080/01485010390129269.

48. Овчинников Р.И., Попова А.Ю., Гамидов С.И., Квасов А.В. Антиоксидантная терапия – ключ к лечению идиопатического мужского бесплодия. Медицинский совет. 2017;(20):177–181. https://doi.org/10.21518/2079-701X-2017-20-177-181.

49. Dinicola S., Unfer V., Facchinetti F., Soulage C.O., Greene N.D., Bizzarri M. et al. Inositols: From Established Knowledge to Novel Approaches. Int J Mol Sci. 2021;22(19):10575. https://doi.org/10.3390/ijms221910575.

50. Scherer J. Ueber eine neue, aus dem Muskelfleische gew onnene Zuckerart. Liebigs Ann Chem. 2022;73:322–328. https://doi.org/10.1002/jlac.18500730303.

51. Murthy P.P. Structure and nomenclature of inositol phosphates, phosphoinositides, and glycosylphosphatidylinositols. Subcell Biochem. 2006;39:1–19. https://doi.org/10.1007/0-387-27600-9_1.

52. Majunder A., Biswas B. (eds.). Biology of Inositols and Phosphoinositides. New York: Springer; 2006. 340 p. https://doi.org/10.1007/0-387-27600-9.

53. Dinicola S., Minini M., Unfer V., Verna R., Cucina A., Bizzarri M. Nutritional and Acquired Deficiencies in Inositol Bioavailability. Correlations with Metabolic Disorders. Int J Mol Sci. 2017;18(10):2187. https://doi.org/10.3390/ijms18102187.

54. Bizzarri M., Fuso A., Dinicola S., Cucina A., Bevilacqua A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin Drug Metab Toxicol. 2016;12(10):1181–1196. https://doi.org/10.1080/17425255.2016.1206887.

55. Milewska E.M., Czyzyk A., Meczekalski B., Genazzani A.D. Inositol and human reproduction. From cellular metabolism to clinical use. Gynecol Endocrinol. 2016;32(9):690–695. https://doi.org/10.1080/09513590.2016.1188282.

56. Yeung C.H., Anapolski M., Setiawan I., Lang F., Cooper T.G. Effects of putative epididymal osmolytes on sperm volume regulation of fertile and infertile c-ros transgenic Mice. J Androl. 2004;25(2):216–223. https://doi.org/10.1002/j.1939-4640.2004.tb02781.x.

57. Condorelli R.A., Barbagallo F., Calogero A.E., Cannarella R., Crafa A., La Vignera S. D-Chiro-Inositol Improves Sperm Mitochondrial Membrane Potential: In Vitro Evidence. J Clin Med. 2020;9(5):1373. https://doi.org/10.3390/jcm9051373.

58. Artini P.G., Casarosa E., Carletti E., Monteleone P., Di Noia A., Di Berardino O.M. In vitro effect of myo-inositol on sperm motility in normal and oligoasthenospermia patients undergoing in vitro fertilization. Gynecol Endocrinol. 2017;33(2):109–112. https://doi.org/10.1080/09513590.2016.1254179.

59. Mohammadi F., Varanloo N., Heydari Nasrabadi M., Vatannejad A., Amjadi F.S., Javedani Masroor M. et al. Supplementation of sperm freezing medium with myoinositol improve human sperm parameters and protects it against DNA fragmentation and apoptosis. Cell Tissue Bank. 2019;20(1):77–86. https://doi.org/10.1007/s10561-018-9731-0.

60. Gambioli R., Forte G., Aragona C., Bevilacqua A., Bizzarri M., Unfer V. The use of D-chiro-Inositol in clinical practice. Eur Rev Med Pharmacol Sci. 2021;25(1):438–446. https://doi.org/10.26355/eurrev_202101_24412.

61. Condorelli R.A., Cannarella R., Crafa A., Barbagallo F., Gusmano C., Avola O. et al. Advances in non-hormonal pharmacotherapy for the treatment of male infertility: the role of inositols. Expert Opin Pharmacother. 2022;1–10. https://doi.org/10.1080/14656566.2022.2060076.

62. Sacchi S., Marinaro F., Tondelli D., Lui J., Xella S., Marsella T. et al. Modulation of gonadotrophin induced steroidogenic enzymes in granulosa cells by d-chiroinositol. Reprod Biol Endocrinol. 2016;14(1):52. https://doi.org/10.1186/s12958-016-0189-2.

63. Monastra G., Vazquez-Levin M., Bezerra Espinola M.S., Bilotta G., Laganà A.S., Unfer V. D-chiro-inositol, an aromatase down-modulator, increases androgens and reduces estrogens in male volunteers: a pilot study. Basic Clin Androl. 2021;31(1):13. https://doi.org/10.1186/s12610-021-00131-x.

64. Tsametis C.P, Isidori A. Testosterone replacement therapy: For whom, when and how? Metabolism. 2018;86:69–78. https://doi.org/10.1016/j.metabol.2018.03.007.


Рецензия

Для цитирования:


Овчинников Р.И. Мужское бесплодие, связанное с окислительным стрессом сперматозоидов: патогенез и терапевтический подход. Медицинский Совет. 2022;(5):46-53. https://doi.org/10.21518/2079-701X-2022-16-5-46-53

For citation:


Ovchinnikov R.I. Male infertility associated with oxidative stress of spermatozoa: pathogenesis and therapeutic approach. Meditsinskiy sovet = Medical Council. 2022;(5):46-53. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-5-46-53

Просмотров: 114


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)