Pathogenetic and clinical significance of the gut-liver microbiota axis
https://doi.org/10.21518/2079-701X-2022-16-7-69-75
Abstract
Today, nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) account for more than 50% of chronic liver diseases and cirrhosis in developed countries. The clinical significance of these pathologies lies in the formation of liver fibrosis and, therefore, in the increased risk of liver cirrhosis and hepatocellular carcinoma, which are life-threatening conditions. NAFLD is based on obesity and insulin resistance, whereas alcohol consumption is central to the etiopathogenesis of ALD. Recently, the role of the gut-liver microbiota axis in the genesis of NAFLD and ALD has also received increasing attention. Changes in qualitative and quantitative composition of intestinal microbiota and alterations of barrier function of intestinal mucosa can lead to entry of intraluminal antigens through portal vein system into the liver, inducing damage to hepatocytes and activation of proinflammatory processes. It is shown that in patients with CLD (NAFLD and ALD) there is an increase in the permeability of the intestinal mucosa and dysbiotic changes of the intestinal microbiome. The role of the gut-liver microbiota axis is well described in the genesis of NAFLD and ALD. Chronic alcohol consumption leads to increased colonies of Gram-negative bacteria in the intestinal mucosa and, therefore, to the accumulation of endotoxins (lipopolysaccharide components of bacterial cell membranes). Acetaldehyde produced by ADH of the intestinal epithelium stimulates tyrosine phosphorylation of tight cell contacts, increasing intestinal mucosal permeability, which leads to translocation of endotoxins into the portal bloodstream. Obesity is a major risk factor for NAFLD, which is also associated with dysbiotic changes in the intestinal microbiome. Obese individuals have increased Firmicutes, decreased Bacteroidetes, mediated reduction of short-chain fatty acid synthesis and increased intestinal wall permeability due to disruption of intercellular dense contacts, which leads to increased translocation of bacteria and endotoxins into the systemic bloodstream.
About the Authors
D. T. DichevaRussian Federation
Diana T. Dicheva - Cand. Sci. (Med.), Associate Professor, Department of Internal Medicine and Gastroenterology, Yevdokimov Moscow State University of Medicine and Dentistry.
20, Bldg. 1, Delegatskaya St., Moscow, 127473.
D. N. Andreev
Russian Federation
Dmitry N. Andreev - Cand. Sci. (Med.), Associate Professor, Department of Internal Medicine and Gastroenterology, Yevdokimov Moscow State University of Medicine and Dentistry.
20, Bldg. 1, Delegatskaya St., Moscow, 127473.
References
1. Komova A., Maevskaya M., Ivashkin V. Prevalence of Liver Disease in Russia’s Largest City: A Population-based Study. Am J Clin Med Res. 2014;2(5):99–102. Available at: https://www.researchgate.net/publication/280769675_Prevalence_of_Liver_Disease_in_Russias_Largest_City_A_Population-based_Study.
2. Blachier M., Leleu H., Peck-Radosavljevic M., Valla D.-C., Roudot-Thoraval F. The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol. 2013;58(3):593–608. https://doi.org/10.1016/j.jhep.2012.12.005.
3. Setiawan V.W., Stram D.O., Porcel J., Lu S.C., Le Marchand L., Noureddin M. Prevalence of chronic liver disease and cirrhosis by underlying cause in understudied ethnic groups: The multiethnic cohort. Hepatology. 2016;64(6):1969–1977. https://doi.org/10.1002/hep.28677.
4. Ivashkin V.T., Drapkina O.M., Mayev I.V., Trukhmanov A.S., Blinov D.V., Palgova L.K. et al. Prevalence of non-alcoholic fatty liver disease in out-patients of the Russian Federation: DIREG 2 study results. Russian Journal of Gastroen terology, Hepatology, Coloproctology. 2015;25(6):31–41. (In Russ.) Available at: http://old-gastro-j.ru/article/684-h2-rasprostranennost-nealkogolnoy-zhirovoy-bolezni-pecheni-u-patsientov-ambulatorno-polikliniche/show/full.
5. Maev I.V., Andreev D.N., Dicheva D.T., Kuznetsova E.I. Nonalcoholic fatty liver disease. Moscow: Prima Print; 2017. 64 p. (In Russ.) Available at: https://docplayer.com/52977167-I-v-maev-d-n-andreev-d-t-dicheva-e-i-kuznecova-nealkogolnaya-zhirovaya-bolezn-pecheni-posobie-dlya-vrachey.html.
6. Maev I.V., Andreev D.N., Dicheva D.T., Kuznetsova E.I. Nonalcoholic fatty liver disease from the point of view of modern medicine. Moscow: Prima Print; 2020. 68 p. (In Russ.) Available at: http://www.mucofalk.ru/files/323051246c45514047bb54e62986bd4d1600950228.pdf.
7. Maev I.V., Andreev D.N., Dicheva D.T., Kuznetsova E.I. Nonalcoholic fatty liver disease from the standpoint of modern medicine. Moscow; 2017. (In Russ.)
8. Maev I.V., Abdurakhmanov D.T., Andreev D.N., Dicheva D.T. Alcoholic liver disease: State-of-the-art. Terapevticheskii Arkhiv. 2014;86(4):108–116. (In Russ.) Available at: https://www.mediasphera.ru/issues/terapevticheskij-arkhiv/2014/4/030040-36602014419.
9. Maev I.V., Kucheryavyy Yu.A., Andreev D.N. Liver and biliary tract in metabolic syndrome. Moscow: Prima Print; 2020. 52 p. (In Russ.) Available at: http://zacofalk.ru/files/5e000ed38c4ad7b151f5545715a0b-c3c1640635183.pdf.
10. Zheng Z., Wang B. The Gut-Liver Axis in Health and Disease: The Role of Gut Microbiota-Derived Signals in Liver Injury and Regeneration. Front Immunol. 2021;12:775526. https://doi.org/10.3389/fimmu.2021.775526.
11. Albillos A., de Gottardi A., Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 2020;72(3):558–577. https://doi.org/10.1016/j.jhep.2019.10.003.
12. Konturek P.C., Harsch I.A., Konturek K., Schink M., Konturek T., Neurath M.F., Zopf Y. Gut–Liver Axis: How Do Gut Bacteria Influence the Liver? Med Sci (Basel). 2018;6(3):79. https://doi.org/10.3390/medsci6030079.
13. Simanenkov V.I., Maev I.V., Tkacheva O.N., Alekseenko S.A., Andreev D.N., Bordin D.S. et al. Syndrome of increased epithelial permeability in clinical practice. Multidisciplinary national Consensus. Cardiovascular Therapy and Prevention (Russian Federation). 2021;20(1):2758. (In Russ.) https://doi.org/10.15829/1728-8800-2021-2758.
14. Farré R., Vicario M. Abnormal Barrier Function in Gastrointestinal Disorders. Handb Exp Pharmacol. 2017;239:193–217. https://doi.org/10.1007/164_2016_107.
15. Bischoff S.C., Barbara G., Buurman W., Ockhuizen T., Schulzke J.D., Serino M. et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189. https://doi.org/10.1186/s12876-014-0189-7.
16. Andreev D.N. The role of alterations in permeability of the intestinal mucosa in the genesis of functional gastrointestinal disorders. Consilium Medicum. 2019;21(8):29–34. (In Russ.) https://doi.org/10.26442/20751753.2019.8.190539.
17. Andreev D.N., Dicheva D.T. A breach in the intestinal permeability as a factor of etiopathogenesis of functional gastrointestinal diseases. Meditsinskiy Sovet. 2020;(5):87–95. (In Russ.) https://doi.org/10.21518/2079-701X-2020-5-87-95.
18. Bevins C.L., Salzman N.H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9(5):356–368. https://doi.org/10.1038/nrmicro2546.
19. van der Flier L.G., Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–260. https://doi.org/10.1146/annurev.physiol.010908.163145.
20. Zihni C., Mills C., Matter K., Balda M.S. Tight junctions: from simple barri ers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016;17(9):564–580. https://doi.org/10.1038/nrm.2016.80.
21. Morris G., Berk M., Carvalho A.F., Caso J.R., Sanz Y., Maes M. The Role of Microbiota and Intestinal Permeability in the Pathophysiology of Autoimmune and Neuroimmune Processes with an Emphasis on Inflammatory Bowel Disease Type 1 Diabetes and Chronic Fatigue Syndrome. Curr Pharm Des. 2016;22(40):6058–6075. https://doi.org/10.2174/1381612822666160914182822.
22. Kerckhoffs A.P., Akkermans L.M., de Smet M.B., Besselink M.G., Hietbrink F., Bartelink I.H. et al. Intestinal permeability in irritable bowel syndrome patients: effects of NSAIDs. Dig Dis Sci. 2010;55(3):716–723. https://doi.org/10.1007/s10620-009-0765-9.
23. Hammer A.M., Morris N.L., Earley Z.M., Choudhry M.A. The First Line of Defense: The Effects of Alcohol on Post-Burn Intestinal Barrier, Immune Cells, and Microbiome. Alcohol Res. 2015;37(2):209–222. Available at: https://pubmed.ncbi.nlm.nih.gov/26695746/.
24. Park M.Y., Kim M.Y., Seo Y.R., Kim J.S., Sung M.K. High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity. J Cancer Prev. 2016;21(2):95–103. https://doi.org/10.15430/JCP.2016.21.2.95.
25. Park J.W., Kim S.-E., Lee N.Y., Kim J.H., Jung J.-H., Jang M.-K. et al. Role of Microbiota-Derived Metabolites in Alcoholic and Non-Alcoholic Fatty Liver Diseases. Int J Mol Sci. 2021;23(1):426. https://doi.org/10.3390/ijms23010426.
26. Maccioni L., Gao B., Leclercq S., Pirlot B., Horsmans Y., De Timary P. et al. Intestinal permeability, microbial translocation, changes in duodenal and fecal microbiota, and their associations with alcoholic liver disease progression in humans. Gut Microbes. 2020;12(1):1782157. https://doi.org/10.1080/19490976.2020.1782157.
27. Miele L., Valenza V., La Torre G., Montalto M., Cammarota G., Ricci R. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49(6):1877–1887. https://doi.org/10.1002/hep.22848.
28. Luther J., Garber J.J., Khalili H., Dave M., Bale S.S., Jindal R. et al. Hepatic Injury in Nonalcoholic Steatohepatitis Contributes to Altered Intestinal Permeability. Cell Mol Gastroenterol Hepatol. 2015;1(2):222–232. https://doi.org/10.1016/j.jcmgh.2015.01.001.
29. De Munck T.J.I., Xu P., Verwijs H.J.A., Masclee A.A.M., Jonkers D., Verbeek J., Koek G.H. Intestinal permeability in human nonalcoholic fatty liver disease: A systematic review and meta-analysis. Liver Int. 2020;40(12):2906–2916. https://doi.org/10.1111/liv.14696.
30. Shah A., Shanahan E., Macdonald G.A., Fletcher L., Ghasemi P., Morrison M. et al. Systematic Review and Meta-Analysis: Prevalence of Small Intestinal Bacterial Overgrowth in Chronic Liver Disease. Semin Liver Dis. 2017;37(4):388–400. https://doi.org/10.1055/s-0037-1608832.
31. Wijarnpreecha K., Lou S., Watthanasuntorn K., Kroner P.T., Cheungpasitporn W., Lukens F.J. et al. Small intestinal bacterial over-growth and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2020;32(5):601–608. https://doi.org/10.1097/MEG.0000000000001541.
32. Ghetti F.F., Oliveira D.G., de Oliveira J.M., Ferreira L.E.V.V.C., Cesar D.E., Moreira A.P.B. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur J Nutr. 2018;57(3):861–876. https://doi.org/10.1007/s00394-017-1524-x.
33. Bull-Otterson L., Feng W., Kirpich I., Wang Y., Qin X., Liu Y. et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One. 2013;8(1):e53028. https://doi.org/10.1371/journal.pone.0053028.
34. Bull-Otterson L., Feng W., Kirpich I., Wang Y., Qin X., Liu Y. et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS ONE. 2013;8(1):e53028. https://doi.org/10.1371/journal.pone.0053028.
35. Maev I.V., Andreev D.N. Nonalcoholic fatty liver disease: mechanisms of development, clinical forms and drug correction. Consilium Medicum. Gastroenterology (Suppl.) 2012;(2):36–39. (In Russ.) Available at: https://omnidoctor.ru/upload/iblock/b43/b436673f255d447712c327e-8c2f0bd69.pdf.
36. Maev I.V., Andreev D.N., Kucheryavyy Yu.A., Umyarova R.M. Metabolically associated fatty liver disease. Moscow; 2021. (In Russ.)
37. Leech B., Schloss J., Steel A. Treatment Interventions for the Management of Intestinal Permeability: A Cross-Sectional Survey of Complementary and Integrative Medicine Practitioners. J Altern Complement Med. 2019;25(6):623–636. https://doi.org/10.1089/acm.2018.0374.
38. Leech B., McIntyre E., Steel A., Sibbritt D. Risk factors associated with intestinal permeability in an adult population: A systematic review. Int J Clin Pract. 2019;73(10):e13385. https://doi.org/10.1111/ijcp.13385.
39. Panfilova V.N., Taranushenko T.E. Application of enterosorbents in clinical practice. Pediatric Pharmacology. 2012;9(6):34–39. (In Russ.) https://doi.org/10.15690/pf.v9i6.516.
40. Snarskaya E.S. Lactofiltrum in the treatment of atopic dermatitis. Modern Problems of Dermatovenerology, Immunology and Medical Cosmetology. 2011;2(15):19–22. (In Russ.) Available at: https://medi.ru/info/2842.
41. Kruglova L.S., Petriy M.N., Gensler E.M. Role of intestinal microbiota in development of atopic dermatitis and methods of its treatment in case of its violation. Medical Alphabet. 2020;(6):22–27. (In Russ.) https://doi.org/10.33667/2078-5631-2020-6-22-27.
42. Ivashkin V.T., Maevskaya M.V., Zharkova M.S., Zhigalova S.B., Kitsenko E.A., Manukyan G.V., Tikhonov I.N. Clinical guidelines: Fibrosis and cirrhosis of the liver. Moscow; 2021. (In Russ.) Available at: https://cr.minzdrav.gov.ru/schema/715_1#doc_a1.
43. Luo M., Li L., Lu C.-Z., Cao W.K. Clinical efficacy and safety of lactulose for minimal hepatic encephalopathy: a meta-analysis. Eur J Gastroenterol Hepatol. 2011;23(12):1250–1257. https://doi.org/10.1097/MEG.0b013e32834d1938.
44. Yankova V.G., Udyanskaya I.L., Grigoryeva V.Yu., Gribanova S.V., Slonskaya T.K., Zhukova A.A. Analysis of binary activity of Lactofiltrum®. Clinical Practice in Pediatrics. 2020;15(5):110–117. (In Russ.) https://doi.org/10.20953/1817-7646-2020-5-110-116.
Review
For citations:
Dicheva DT, Andreev DN. Pathogenetic and clinical significance of the gut-liver microbiota axis. Meditsinskiy sovet = Medical Council. 2022;(7):69-75. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-7-69-75