Inhibitors of dipeptidyl-peptidase-4: obvious and probable (literature review)
https://doi.org/10.21518/2079-701X-2022-16-10-40-45
Abstract
The purpose of the presented literature review was an attempt to sum up current estimates of the effect of the use of dipeptidyl peptidase-4 inhibitors (iDPP-4) in the algorithms of both traditional (diabetes mellitus) and a number of alternative nosologies, in particular, oncological and neurological pathology, as well as a new coronavirus infection (COVID-19). To do this, the most large-scale (as a rule) publications of 2018–2021 devoted to the problems under consideration were analyzed. The search was carried out by keywords in the Pubmed information base (ncbi.nlm.nih.gov). Factors contributing to the widespread use of IDP-4 in clinical practice are both pharmacologically clear mechanism of action and efficacy, as well as the possibility of oral use, a successful pharmacokinetic profile, low toxicity, in particular, a low risk of hypoglycemia. Newly obtained data on the mechanisms of mechanisms are discussed. Renoprotective action, the presence of cardioprotection is debated. The biochemical prerequisites for the possible effectiveness of iDPP-4 as blockers of the development of a hyperimmune reaction that causes, in particular, the severe course of the new coronavirus infection are discussed. At the same time, the results of studies of various designs are categorically compared, indicating both in favor of the use of iDPP-4 in patients with COVID-19, and not noticing its expediency. It is concluded that, given the large-scale biochemical role of DPP-4, it is important both to continue the active use of its inhibitors in diabetes mellitus, and to expand attempts to use them in a number of other nosologies, including COVID-19.
About the Authors
E. A. OrtenbergRussian Federation
Eduard A. Ortenberg, Dr. Sci. (Med.), Professor, Head of the Clinical Pharmacology Course of the Department of Hospital Therapy with Endocrinology and Clinical Pharmacology courses
54, Odesskaya St., Tyumen, 625023
L. A. Suplotova
Russian Federation
Lyudmila A. Suplotova, Dr. Sci. (Med.), Professor, Head of the Course of Endocrinology, Department of Therapy, Institute for Continuous Professional Development
54, Odesskaya St., Tyumen, 625023
References
1. Davies M.J., D’Alessio D.A., Fradkin J., Kernan W.N., Mathieu C., Mingrone G. et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–2701. https://doi.org/10.2337/dci18-0033.
2. Carr R.D., Solomon A. Inhibitors of dipeptidyl peptidase‐4 as therapeutic agents for individuals with type 2 diabetes: a 25‐year journey. Diabet Med. 2020;37(8):1230–1233. https://doi.org/10.1111/dme.14325.
3. Sidorov A.V. Clinical Pharmacology of Dipeptidyl Peptidase 4 Inhibitors: Comparative Review. Effective Pharmacotherapy. 2020;16(25):24–48. (In Russ.) https://doi.org/10.33978/2307-3586-2020-16-25-24-48.
4. Ahrén B. Glucose-lowering action through targeting islet dysfunction in type 2 diabetes: Focus on dipeptidyl peptidase-4 inhibition. J Diabetes Investig. 2021;12(7):1128–1135. https://doi.org/10.1111/jdi.13564.
5. Kawanami D., Takashi Y., Takahashi H., Motonaga R., Tanabe M. Renoprotective Effects of DPP-4 Inhibitors. Antioxidants (Basel). 2021;10(2):246. https://doi.org/10.3390/antiox10020246.
6. Narimani R., Kachuei A., Rezvanian H. Feizi A., Poorpoone M. Effect of sitagliptin on proteinuria in patients with type 2 diabetes – A renoprotective effect of sitagliptin. Res Med Sci. 2021;26:35. https://doi.org/10.4103/jrms.JRMS_78_20.
7. Avogaro A., Fadini G.P. The pleiotropic cardiovascular effects of dipeptidyl peptidase-4 inhibitors. Br J Clin Pharmacol. 2018;84(8):1686–1695. https://doi.org/10.1111/bcp.13611.
8. Packer M. Worsening Heart Failure During the Use of DPP-4 Inhibitors: Pathophysiological Mechanisms, Clinical Risks, and Potential Influence of Concomitant Antidiabetic Medications. JACC Heart Fail. 2018;6(6):445–451. https://doi.org/10.1016/j.jchf.2017.12.016.
9. Sano M. Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk. J Cardiol. 2019;73(1):28–32. https://doi.org/10.1016/j.jjcc.2018.07.004.
10. Ali A., Fuentes A., Skelton IV W.P., Wang Yu., McGorray S., Shah C. et al. A multi-center retrospective analysis of the effect of DPP4 inhibitors on progression-free survival in advanced airway and colorectal cancers. Mol Clin Oncol. 2019;10(1):118–124. https://doi.org/10.3892/mco.2018.1766.
11. Bishnoi R., Hong Y.-R., Shah C., Ali A., Skelton 4th W.P., Huo J. et al. Dipeptidyl peptidase 4 inhibitors as novel agents in improving survival in diabetic patients with colorectal cancer and lung cancer: A Surveillance Epidemiology and Endpoint Research Medicare study. Cancer Med. 2019;8(8):3918–3927. https://doi.org/10.1002/cam4.2278.
12. Kawakita E., Koya D., Kanasaki K. CD26/DPP-4: Type 2 Diabetes Drug Target with Potential Influence on Cancer Biology. Cancers (Basel). 2021;13(9):2191. https://doi.org/10.3390/cancers13092191.
13. Shah C., Hong Y.-R., Bishnoi R., Ali A., Skelton 4th W.P., Dang L.H. et al. Impact of DPP4 Inhibitors in Survival of Patients With Prostate, Pancreas, and Breast Cancer. Front Oncol. 2020;10:405. https://doi.org/10.3389/fonc.2020.00405.
14. Angelopoulou E., Piperi C. DPP-4 inhibitors: a promising therapeutic approach against Alzheimer’s disease. Ann Transl Med. 2018;6(12):255. https://doi.org/10.21037/atm.2018.04.41.
15. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. https://doi.org/10.1016/S0140-6736(20)30638-3.
16. Holman N., Knighton P., Kar P., O’Keefe J., Curley M., Weaver A. et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2020;8(10):823–833. https://doi.org/10.1016/S2213-8587(20)30271-0.
17. Barron E., Bakhai C., Kar P., Weaver A., Bradley D., Ismail H. et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813–822. https://doi.org/10.1016/S2213-8587(20)30272-2.
18. Mantovani A., Byrne C.D., Zheng M.-H., Targher G. Diabetes as a risk factor for greater COVID-19 severity and in-hospital death: a meta-analysis of observational studies. Nutr Metab Cardiovasc Dis. 2020;30(8):1236–1248. https://doi.org/10.1016/j.numecd.2020.05.014.
19. Rubenfeld G.D., Caldwell E., Peabody E., Weaver J., Martin D.P., Neff M. et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353(16):1685–1693. https://doi.org/10.1056/NEJMoa050333.
20. Reinhold D., Bank U., Täger M., Ansorge S., Wrenger S., Thielitz A. et al. DP IV/CD26, APN/CD13 and related enzymes as regulators of T cell immunity: implications for experimental encephalomyelitis and multiple sclerosis. Front Biosci. 2008;13:2356–2363. https://doi.org/10.2741/2849.
21. Lontchi-Yimagou E., Sobngwi E., Matsha T.E., Kengne A.P. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13(3):435–444. https://doi.org/10.1007/s11892-013-0375y.
22. Katsiki N., Ferrannini E. Anti-inflammatory properties of antidiabetic drugs: A “promised land” in the COVID-19 era? J Diabetes Complications. 2020;34(12):107723. https://doi.org/10.1016/j.jdiacomp.2020.107723.
23. Yazbeck R., Jaenisch S.E., Abbott C.A. Dipeptidyl peptidase 4 inhibitors: Applications in innate immunity? Biochem Pharmacol. 2021;188:114517. https://doi.org/10.1016/j.bcp.2021.114517.
24. Shao S., Xu Q., Yu X., Pan R., Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther. 2020;209:107503. https://doi.org/10.1016/j.pharmthera.2020.107503.
25. Nargis T., Chakrabarti P. Significance of circulatory DPP4 activity in metabolic diseases. IUBMB Life. 2018;70(2):112–119. https://doi.org/10.1002/iub.1709.
26. Yazbeck R., Howarth G.S., Butler R.N., Geier M.S., Abbott C.A. Biochemical and histological changes in the small intestine of mice with dextran sulfate sodium colitis. J Cell Physiol. 2011;226(12):3219–3224. https://doi.org/10.1002/jcp.22682.
27. Bassendine M.F., Bridge S.H., McCaughan G.W., Gorrell M.D. COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity? J Diabetes. 2020;12(9):649–658. https://doi.org/10.1111/1753-0407.13052.
28. Lu G., Hu Y., Wang Q., Qi J., Gao F., Li Y. et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013;500(7461):227–231. https://doi.org/10.1038/nature12328.
29. Solerte S.B., D’Addio F., Trevisan R., Lovati E., Rossi A., Pastore I. et al. Sitagliptin treatment at the time of hospitalization was associated with reduced mortality in patients with type 2 diabetes and COVID-19: a multicenter, case-control, retrospective, observational study. Diabetes Care. 2020;43(13):2999–3006. https://doi.org/10.2337/dc20-1521.
30. Al-Kuraishy H.M., Al-Gareeb A.I., Qusty N., Alexiou A., Batih G.E.-S. Impact of Sitagliptin in Non-Diabetic Covid-19 Patients. Curr Mol Pharmacol. 2022;15(4):683–692. https://doi.org/10.2174/1874467214666210902115650.
31. Alhakamy N.A., Ahmed O.A.A., Ibrahim T.S., Aldawsari H.M., Eljaaly K., Fahmy U.A. et al. Evaluation of the Antiviral Activity of SitagliptinGlatiramer Acetate Nano-Conjugates against SARS-CoV-2 Virus. Pharmaceuticals (Basel). 2021;14(3):178. https://doi.org/10.3390/ph14030178.
32. Al-Rabia M.W., Alhakamy N.A., Ahmed O.A.A., Eljaaly K., Alaofi A.L., Mostafa A. et al. Repurposing of Sitagliptin-Melittin Optimized Nanoformula against SARS-CoV-2: Antiviral Screening and Molecular Docking Studies. Pharmaceutics. 2021;13(3):307. https://doi.org/10.3390/pharmaceutics13030307.
33. Noh Y., Oh I.-S., Jeong H.E., Filion K.B., Yu O.H.Y., Shin J.-Y. Association Between DPP-4 Inhibitors and COVID-19-Related Outcomes Among Patients With Type 2 Diabetes. Diabetes Care. 2021;44(4):e64–e66. https://doi.org/10.2337/dc20-1824.
34. Yang Y., Cai Z., Zhang J. DPP-4 inhibitors may improve the mortality of coronavirus disease 2019: A meta-analysis. PLoS ONE. 2021;16(5):e0251916. https://doi.org/10.1371/journal.pone.0251916.
35. Rakhmat I.I., Kusmala Yu.Yu., Handayani D.R., Juliastuti H., Nawangsih E.N., Wibowo A. et al. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19) – A systematic review, metaanalysis, and meta-regression. Diabetes Metab Syndr. 2021;15(3):777–782. https://doi.org/10.1016/j.dsx.2021.03.027.
36. Sainsbury C., Wang J., Gokhale K., Acosta-Mena D., Dhalla S., Byne N. et al. Sodium-glucose co-transporter-2 inhibitors and susceptibility to COVID-19: A population-based retrospective cohort study. Diabetes Obes Metab. 2021;23(1):263–269. https://doi.org/10.1111/dom.14203.
37. Dalan R., Ang L.W., Tan W.Y.T., Fong S.-W., Tay W.C., Chan Y.-H. et al. The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: an observational study. Eur Heart J Cardiovasc Pharmacother. 2021;7(3):e48–e51. https://doi.org/10.1093/ehjcvp/pvaa098.
38. Chen Y., Yang D., Cheng B., Chen J., Peng A., Yang C. et al. Clinical Characteristics and Outcomes of Patients With Diabetes and COVID-19 in Association With Glucose-Lowering Medication. Diabetes Care. 2020;43(7):1399–1407. https://doi.org/10.2337/dc20-0660.
39. Drucker D.J. Coronavirus Infections and Type 2 Diabetes-Shared Pathways with Therapeutic Implications. Endocr Rev. 2020;41(3):bnaa011. https://doi.org/10.1210/endrev/bnaa011.
40. Bonora B.M., Avogaro A., Fadini G.P. Disentangling conflicting evidence on DPP-4 inhibitors and outcomes of COVID-19: narrative review and meta-analysis. J Endocrinol Invest. 2021;44(7):1379–1386. https://doi.org/10.1007/s40618-021-01515-6.
41. Fadini G.P., Morieri M.L., Longato E., Bonora B.M., Pinelli S., Selmin E. et al. Exposure to dipeptidyl-peptidase-4 inhibitors and COVID-19 among people with type 2 diabetes: A case-control study. Diabetes Obes Metab. 2020;22(10):1946–1950. https://doi.org/10.1111/dom.14097.
42. Meijer R.I., Hoekstra T., van den Oever N.C.G., Simsek S., van den Bergh J.P., Douma R.A. et al. Treatment with a DPP-4 inhibitor at time of hospital admission for COVID-19 is not associated with improved clinical outcomes: data from the COVID-PREDICT cohort study in The Netherlands. J Diabetes Metab Disord. 2021;20(2):1–6. https://doi.org/10.1007/s40200-021-00833-z
43. . 43. Pérez-Belmonte L.M., Torres-Peña J.D., López-Carmona M.D., AyalaGutiérrez M.M., Fuentes-Jiménez F., Huerta L.J. et al. Mortality and other adverse outcomes in patients with type 2 diabetes mellitus admitted for COVID-19 in association with glucose-lowering drugs: a nationwide cohort study. BMC Med. 2020;18(1):359. https://doi.org/10.1186/s12916-020-01832-2.
44. Zhou J.-H., Wu B., Wang W.-X., Lei F., Cheng X., Qin J.-J. et al. No significant association between dipeptidyl peptidase-4 inhibitors and adverse outcomes of COVID-19. World J Clin Cases. 2020;8(22):5576–5588. https://doi.org/10.12998/wjcc.v8.i22.5576.
45. Scheen A.J. DPP-4 inhibition and COVID-19: From initial concerns to recent expectations. Diabetes Metab. 2021;47(2):101213. https://doi.org/10.1016/j.diabet.2020.11.005.
46. Sun B., Huang S., Zhou J. Perspectives of Antidiabetic Drugs in Diabetes With Coronavirus Infections. Front Pharmacol. 2021;11:592439. https://doi.org/10.3389/fphar.2020.592439.
47. Bornstein S.R., Rubino F., Khunti K., Mingrone G., Hopkins D., Birkenfeld A.L. et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8(6):546–550. https://doi.org/10.1016/S2213-8587(20)30152-2.
48. Zhu L., She Z.-G., Cheng X., Qin J.-J., Zhang X.-J., Cai J. et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6):1068–1077.e3. https://doi.org/10.1016/j.cmet.2020.04.021
Review
For citations:
Ortenberg EA, Suplotova LA. Inhibitors of dipeptidyl-peptidase-4: obvious and probable (literature review). Meditsinskiy sovet = Medical Council. 2022;(10):40-45. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-10-40-45