The role of micronutrients in maintaining women’s reproductive potential reduced due to infectious diseases
https://doi.org/10.21518/2079-701X-2022-16-16-101-107
Abstract
The human immune system, which is in close connection with other organs and systems including the reproductive one, is required for the body’s defence against infections, as well as other external and internal factors. A balanced diet with a sufficient content of not only macro-, but also micronutrients is necessary for the normal function of the immune system. Various studies showed a relationship between the deficiency of various vitamins and trace elements and decreased activity of the immune system. Thus, the immune response can be impaired by malnutrition and trace element deficiency, which increases the body’s susceptibility to infectious factors. In its turn, the infectious process can lead to an increased demand for micronutrients, which is met by exogenous substances, and in case of not enough consumption of them – by endogenous reserves. Infections are one of the main factors deteriorating human reproductive health. Pelvic inflammatory diseases (PID) hold leading positions in the gynecological pathology pattern, and their prevalence does not show a downward trend. This literature review considers the impact of major infections on women’s reproductive health, presents data on the role of micronutrients in preventing infectious diseases and rehabilitating after them, as well as in preserving reproductive functions after infections. The importance of vitamin C, E, B vitamins, zinc, L-arginine for the preservation and restoration of women’s fertility is considered, and the results of studies on the issue are presented.
Keywords
About the Authors
A. G. SyrkashevaRussian Federation
Anastasiya G. Syrkasheva, Cand. Sci. (Med.), Senior Researcher
Professor B. V. Leonov Department of Assisted Reproductive Technology in
Infertility Treatment
117997
4, Academician Oparin St.
Moscow
O. I. Lisitsyna
Russian Federation
Olga I. Lisitsyna, Postgraduate Student
Professor B. V. Leonov Department of Assisted Reproductive Technology in Infertility Treatment
117997
4, Academician Oparin St.
Moscow
References
1. Дикке Г. Б. Современная противовирусная терапия генитального герпеса у женщин вне беременности и во время нее / Г. Б. Дикке, Т. Н. Бебнева // Акушерство и гинекология. – 2018. – (9): 145–150. https://doi.org/10.18565/aig.2018.9.145-150. – Dikke G. B., Bebneva T. N. Current antiviral therapy for genital herpes in non-pregnant and pregnant women. Akusherstvo i Ginekologiya (Russian Federation). 2018; (9): 145–150. (In Russ.) https://doi.org/10.18565/aig.2018.9.145-150.
2. Сухих Г. Т. Иммунные факторы в этиологии и патогенезе осложнений беременности / Г. Т. Сухих, Л. В. Ванько // Акушерство и гинекология. – 2012. – (1): 128–136. Режим доступа: https://aig-journal.ru/articles/Immunnye-faktory-v-etiologii-i-patogeneze-oslojnenii-beremennosti.html. – Sukhikh G. T., Vanko L. V. Immune factors in the etiology and pathogenesis of pregnancy complications. Akusherstvo i Ginekologiya (Russian Federation). 2012; (1): 128–136. (In Russ.) Available at: https://aig-journal.ru/articles/Immunnye-faktory-v-etiologii-i-patogeneze-oslojnenii-beremennosti.html.
3. Jing Y., Run-Qian L., Hao-Ran W., Hao-Ran C., Ya-Bin L., Yang G. et al. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol Hum Reprod. 2020; 26 (6): 367–373. https://doi.org/10.1093/molehr/gaaa030.
4. Припутневич Т. В. Новый коронавирус SARS-COV-2 и беременность: обзор литературы / Т. В. Припутневич [и др.] // Акушерство и гинекология. – 2020/ – (5): 6–12. Режим доступа: https://en.aig-journal.ru/articles/Novyi-koronavirus-SARS-COV-2-i-beremennost-obzor-literatury.html. – Priputnevich T. V., Gordeev A. B., Lyubasovskaya L. A., Shabanova N. E. The novel coronavirus SARS-CoV-2 and pregnancy: literature review. Akusherstvo i Ginekologiya (Russian Federation). 2020; (5): 6–12. (In Russ.) Available at: https://en.aig-journal.ru/articles/Novyi-koronavirus-SARS-COV-2-i-beremennost-obzor-literatury.html.
5. Gombart A. F., Pierre A., Maggini S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020; 12 (1): 236. https://doi.org/10.3390/nu12010236.
6. Carr A. C., Maggini S. Vitamin C and Immune Function. Nutrients. 2017; 9 (11): 1211. https://doi.org/10.3390/nu9111211.
7. Haryanto B., Suksmasari T., Wintergerst E., Maggini S., Miner V. Multivitamin Supplementation Supports Immune Function and Ameliorates Conditions Triggered By Reduced Air Quality. Vitam Miner. 2015; 4 (2). Available at: https://www.researchgate.net/publication/281176134_Multivitamin_Supplementation_Supports_Immune_Function_and_Ameliorates_Conditions_Triggered_By_Reduced_Air_Quality.
8. Tsujino I., Ushikoshi-Nakayama R., Yamazaki T., Matsumoto N., Saito I. Pulmonary activation of vitamin D (3) and preventive effect against interstitial pneumonia. J Clin Biochem Nutr. 2019; 65 (3): 245–251. https://doi.org/10.3164/jcbn.19-48.
9. Bakaev V. V, Duntau A. P. Ascorbic acid in blood serum of patients with pulmonary tuberculosis and pneumonia. Int J Tuberc Lung Dis. 2004; 8 (2):263–266. Available at: https://pubmed.ncbi.nlm.nih.gov/15139458.
10. Hunt C., Chakravorty N. K., Annan G., Habibzadeh N., Schorah C. J. The clinical effects of vitamin C supplementation in elderly hospitalised patients with acute respiratory infections. Int J Vitam Nutr Res. 1994; 64 (3): 212–219. Available at: https://pubmed.ncbi.nlm.nih.gov/7814237.
11. Fowler III A. A., Kim C., Lepler L., Malhotra R., Debesa O., Natarajan R. et al. Intravenous vitamin C as adjunctive therapy for enterovirus / rhinovirus induced acute respiratory distress syndrome. World J Crit Care Med. 2017; 6 (1): 85–90. https://doi.org/10.5492/wjccm.v6.i1.85.
12. Bharara A., Grossman C., Grinnan D., Syed A., Fisher B., DeWilde C. et al. Intravenous Vitamin C Administered as Adjunctive Therapy for Recurrent Acute Respiratory Distress Syndrome. Case Rep Crit Care. 2016; 2016: 8560871. https://doi.org/10.1155/2016/8560871.
13. Vissers M. C. M., Wilkie R. P. Ascorbate deficiency results in impaired neutrophil apoptosis and clearance and is associated with up-regulation of hypoxia- inducible factor 1alpha. J Leukoc Biol. 2007;81 (5): 1236–1244. https://doi.org/10.1189/jlb.0806541.
14. Maggini S., Pierre A., Calder P. C. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018; 10 (10). https://doi.org/10.3390/nu10101531.
15. Meydani S. N., Barklund M. P., Liu S., Meydani M., Miller R. A., Cannon J. G. et al. Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. Am J Clin Nutr. 1990; 52 (3): 557–563. https://doi.org/10.1093/ajcn/52.3.557.
16. Mahalingam D., Radhakrishnan A. K., Amom Z., Ibrahim N., Nesaretnam K. Effects of supplementation with tocotrienol-rich fraction on immune response to tetanus toxoid immunization in normal healthy volunteers. Eur J Clin Nutr. 2011; 65 (1): 63–69. https://doi.org/10.1038/ejcn.2010.184.
17. Wu D., Han S. N., Meydani M., Meydani S. N. Effect of concomitant consumption of fish oil and vitamin E on T cell mediated function in the elderly: a randomized double-blind trial. J Am Coll Nutr. 2006; 25 (4): 300–306. https://doi.org/10.1080/07315724.2006.10719539.
18. Graat J. M., Schouten E. G., Kok F. J. Effect of daily vitamin E and multivitamin- mineral supplementation on acute respiratory tract infections in elderly persons: a randomized controlled trial. JAMA. 2002; 288 (6): 715–721. https://doi.org/10.1001/jama.288.6.715.
19. Ruder E. H., Hartman T., Reindollar R. H., Goldman B. M. Female dietary anti-oxidant intake and time to pregnancy among couples treated for unexplained infertility. Fertil Seril. 2014; 101 (3): 759–766. https://doi.org/10.1016/j.fertnstert.2013.11.008
20. Ishikawa Y., Tanaka H., Akutsu T., Koide K., Sakuma M., Okazaki M. et al. Prenatal vitamin A supplementation associated with adverse child behavior at 3 years in a prospective birth cohort in Japan. Pediatr Int. 2016; 58: 855–861. https://doi.org/10.1111/ped.12925.
21. Lin H.-Y., Fu Q., Kao Y.-H., Tseng T.-S., Reiss K., Cameron J. E. et al. Antioxidants Associated With Oncogenic Human Papillomavirus Infection in Women. J Infect Dis. 2021; 224 (9): 1520–1528. https://doi.org/10.1093/infdis/jiab148.
22. Barchitta M., Maugeri A., La Mastra C., Rosa M. C. La, Favara G., Lio R. M. S. et al. Dietary Antioxidant Intake and Human Papillomavirus Infection: Evidence from a Cross- Sectional Study in Italy. Nutrients. 2020; 12 (5). https://doi.org/10.3390/nu12051384.
23. Долгушина Н. В. Нормальная беременность: клинические рекомендации / Н. В. Долгушина [и др.] – М., 2020. – 80 c. Режим доступа: http://niiomm.ru/attachments/article/265/%D0%9D%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F%20%D0%B1%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C%202021.pdf. – Dolgushina N. V., Artymuk N. V., Belokrinnitskaya T. E., Romanov A. Yu., Volochaeva M. V., Filippov O. S. Normal pregnancy: clinical guidelines. Moscow; 2020. 80 p. (In Russ.) Available at: http://niiomm.ru/attachments/article/265/%D0%9D%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F%20%D0%B1%D0%B5%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C%202021.pdf.
24. Wintergerst E. S., Maggini S., Hornig D. H. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab. 2007; 51 (4): 301–323. https://doi.org/10.1159/000107673.
25. Wintergerst E. S., Maggini S., Hornig D. H. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab. 2006; 50 (2): 85–94. https://doi.org/10.1159/000090495.
26. Krezel A., Maret W. Zinc-buffering capacity of a eukaryotic cell at physiological pZn. Biol Inorg Chem. 2006; 11 (8): 1049–1062. https://doi.org/10.1007/s00775-006-0150-5.
27. Kümel G., Schrader S., Zentgraf H., Daus H., Brendel M. The mechanism of the antiherpetic activity of zinc sulphate. J Gen Virol. 1990; 71: 2989–2997. https://doi.org/10.1099/0022-1317-71-12-2989.
28. Krenn B. M., Gaudernak E., Holzer B., Lanke K., Van Kuppeveld F. J. M., Seipelt J. Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. J Virol. 2009; 83 (1): 58–64. https://doi.org/10.1128/JVI.01543-08.
29. Arens M., Travis S. Zinc salts inactivate clinical isolates of herpes simplex virus in vitro. J Clin Microbiol. 2000; 38 (5): 1758–1762. https://doi.org/10.1128/JCM.38.5.1758-1762.2000.
30. Gupta P., Rapp F. Effect of zinc ions on synthesis of herpes simplex virus type 2-induced polypeptides. Proc Soc Exp Biol Med. 1976; 152 (3): 455–458. https://doi.org/10.3181/00379727-152-39417.
31. Godfrey H. R., Godfrey N. J., Godfrey J. C., Riley D. A randomized clinical trial on the treatment of oral herpes with topical zinc oxide/glycine. Altern Ther Health Med. 2001; 7 (3): 49–56. Available at: https://pubmed.ncbi.nlm.nih.gov/11347285.
32. Mahajan B. B., Dhawan M., Singh R. Herpes genitalis – Topical zinc sulfate: An alternative therapeutic and modality. Indian J Sex Transm Dis AIDS. 2013; 34 (1): 32–34. https://doi.org/10.4103/0253-7184.112867.
33. Afsharian M., Vaziri S., Janbakhsh A. R., Sayad B., Mansouri F., Nourbakhsh J. et al. The effect of zinc sulfate on immunologic response to recombinant hepatitis B vaccine in elderly. Hepat Mon. 2011; 11 (1): 32–35. Available at: https://pubmed.ncbi.nlm.nih.gov/22087114.
34. Habib M. A., Soofi S., Sheraz A., Bhatti Z. S., Okayasu H., Zaidi S. Z. et al. Zinc supplementation fails to increase the immunogenicity of oral poliovirus vaccine: a randomized controlled trial. Vaccine. 2015; 33 (6): 819–825. https://doi.org/10.1016/j.vaccine.2014.12.001.
35. Lazarus R. P., John J., Shanmugasundaram E., Rajan A. K., Thiagarajan S., Giri S. et al. The effect of probiotics and zinc supplementation on the immune response to oral rotavirus vaccine: A randomized, factorial design, placebo-controlled study among Indian infants. Vaccine. 2018; 36 (2): 273–279. https://doi.org/10.1016/j.vaccine.2017.07.116.
36. Stoffel N. U., Uyoga M. A., Mutuku F. M., Frost J. N., Mwasi E., Paganini D. et al. Iron Deficiency Anemia at Time of Vaccination Predicts Decreased Vaccine Response and Iron Supplementation at Time of Vaccination Increases Humoral Vaccine Response: A Birth Cohort Study and a Randomized Trial Follow- Up Study in Kenyan Infants. Front Immunol. 2020; 11: 1313. https://doi.org/10.3389/fimmu.2020.01313.
37. Mandal A. Do malnutrition and nutritional supplementation have an effect on the wound healing process? J Wound Care. 2006; 15 (6): 254–257. https://doi.org/10.12968/jowc.2006.15.6.26923.
38. Tong B. C., Barbul A. Cellular and physiological effects of arginine. Mini Rev Med Chem. 2004; 4 (8): 823–382. https://doi.org/10.2174/1389557043403305.
39. Berger M. M., Binz P.-A., Roux C., Charrière M., Scaletta C., Raffoul W. et al. Exudative glutamine losses contribute to high needs after burn injury. JPEN J Parenter Enteral Nutr. 2022; 46 (4): 782–788. https://doi.org/10.1002/jpen.2227.
40. Everett J., Turner K., Cai Q., Gordon V., Whiteley M., Rumbaugh K. Arginine Is a Critical Substrate for the Pathogenesis of Pseudomonas aeruginosa in Burn Wound Infections. MBio. 2017;8 (2). https://doi.org/10.1128/mBio.02160-16.
41. Weckman A. M., McDonald C. R., Baxter J.-A. B., Fawzi W. W., Conroy A. L., Kain K. C. Perspective: L-arginine and L-citrulline Supplementation in Pregnancy: A Potential Strategy to Improve Birth Outcomes in Low- Resource Settings. Adv Nutr. 2019; 10 (5): 765–777. https://doi.org/10.1093/advances/nmz015.
42. Wu G., Bazer F. W., Satterfield M. C., Li X., Wang X., Johnson G. A. et al. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids. 2013; 45 (2): 241–256. https://doi.org/10.1007/s00726-013-1515-z.
43. Böger R. H., Bode-Böger S. M. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol. 2001; 41: 79–99. https://doi.org/10.1146/annurev.pharmtox.41.1.79.
44. Walker P. G. T., Floyd J., Ter Kuile F., Cairns M. Estimated impact on birth weight of scaling up intermittent preventive treatment of malaria in pregnancy given sulphadoxine- pyrimethamine resistance in Africa: A mathematical model. PLoS Med. 2017; 14 (2): e1002243. https://doi.org/10.1371/journal.pmed.1002243.
Review
For citations:
Syrkasheva AG, Lisitsyna OI. The role of micronutrients in maintaining women’s reproductive potential reduced due to infectious diseases. Meditsinskiy sovet = Medical Council. 2022;(16):101-107. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-16-101-107