Clinical and molecular features of virus-induced acute exacerbations of chronic obstructive pulmonary diseas
https://doi.org/10.21518/2079-701X-2022-16-18-30-39
Abstract
Introduction. Inflammation in viral-induced acute exacerbations of chronic obstructive pulmonary disease (COPD) is not studied enough.
The aim was to establish molecular pattern of inflammation in viral-induced acute exacerbations of chronic obstructive pulmonary disease (AECOPD) in comparison with bacterial AECOPD and to reveal associations with AECOPD phenotype and subsequent COPD progression.
Materials and methods. Subjects hospitalized with acute exacerbations of COPD (AECOPD) of which 60 were viral, 60 were bacterial and 60 were viral-bacterial were recruited to single center prospective (52 weeks) cohort study. Control group – 30 healthy people. COPD were diagnosed previously during stable phase of the disease according to spirographic criteria. Viral AECOPD were confirmed by detection of RNA of influenza A and B, respiratory syncytial virus, rhinovirus or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in sputum or bronchoalveolar lavage fluid (BALF) using reverse transcription-polymerase chain reaction (RT-PCR). Bacterial AECOPD were confirmed by sputum/BALF neutrophilia or elevated blood procalcitonin levels or by detecting bacteria by standard culture method. Plasma concentrations of cytokines, fibrotic markers, enzymes were measured by enzyme-linked immunosorbent assay, plasma fibrinogen – by Clauss method. Complex lung function investigation, Dopplerechocardiography, subsequent AECOPD assessment were done. Kruskal-Wallis and chi-square test were used to compare groups, Cox regression and linear regression – to explore relationships.
Results. Viral AECOPD were characterized by highest plasma concentrations of Eosinophilic cationic protein (62,3 (52,4; 71,0) ng/ml)), interleukin-5 (IL-5) (11,3 (8,4; 15,9) pg/ml), fibroblast growth factor-2 (FGF-2) (10,4 (6,2; 14,9) pg/ml), transforming growth factor-β1 (TGF-β1) (922,4 (875,7; 953,8) pg/ml), hyaluronic acid (185,4 (172,8; 196,3) ng/ml), amino-terminal propeptide of type III procollagen (PIIINP) (249,2 (225,1; 263,7) ng/ml), matrix metalloproteinase-1 (MMP-1) (235,2 (208,6; 254,9) pg/ml). Levels of IL-5 during AE COPD was the predictor of FEV1, bronchodilation coefficient, subsequent exacerbations at remote period, fibrinogen was associated with FEV1, PIIINP and FGF-2 with DLco, PaO2, mean pulmonary artery pressure (mPAP), exacerbations, MMP-1 – with mPAP.
Conclusions. In virus-induced AECOPD inflammation pattern differed from those in bacterial one and associated with AECOPD phenotype and COPD phenotype at the stable phase.
Keywords
About the Authors
L. A. ShpaginaRussian Federation
Lyubov A. Shpagina, Dr. Sci. (Med.), Professor, Head of the Department of Hospital Therapy and Medical Rehabilitation
21, Polzunov St., Novosibirsk, 630051
O. S. Kotova
Russian Federation
Olga S. Kotova, Dr. Sci. (Med.), Associate Professor of the Department of Hospital Therapy and Medical Rehabilitation
21, Polzunov St., Novosibirsk, 630051
I. S. Shpagin
Russian Federation
Ilya S. Shpagin, Dr. Sci. (Med.), Associate Professor of the Department of Hospital Therapy and Medical Rehabilitation
21, Polzunov St., Novosibirsk, 630051
D. A. Gerasimenko
Russian Federation
Dmitriy A. Gerasimenko, Postgraduate Student of the Department of Hospital Therapy and Medical Rehabilitation
21, Polzunov St., Novosibirsk, 630051
G. V. Kuznetsova
Russian Federation
Galina V. Kuznetsova, Cand. Sci. (Med.), Associate Professor of the Department of Hospital Therapy and Medical Rehabilitation
21, Polzunov St., Novosibirsk, 630051
S. A. Karmanovskaya
Russian Federation
Svetlana A. Karmanovskaya, Dr. Sci. (Med.), Associate Professor of the Department of Hospital Therapy and Medical Rehabilitation
21, Polzunov St., Novosibirsk, 630051
E. M. Loktin
Russian Federation
Evgeniy M. Loktin, Dr. Sci. (Med.), Associate Professor of the Department of Anesthesiology and Intensive Care, Faculty of Medicine
21, Polzunov St., Novosibirsk, 630051
A. A. Rukavitsyna
Russian Federation
Anastasiya A. Rukavitsyna, Assistant of the Department of Nursing, Faculty of Medicine
21, Polzunov St., Novosibirsk, 630051
E. V. Anikina
Russian Federation
Ekaterina V. Anikina, Assistant of the Department of Hospital Therapy and Medical Rehabilitation
21, Polzunov St., Novosibirsk, 630051
N. V. Kamneva
Russian Federation
Natalya V. Kamneva, Cand. Sci. (Med.), Assistant of the Department of Hospital Therapy and Medical Rehabilitation
21, Polzunov St., Novosibirsk, 630051
K. V. Likhenko-Logvinenko
Russian Federation
Kristina V. Likhenko-Logvinenko, Postgraduate Student of the Department of Hospital Therapy and Medical Rehabilitation
21, Polzunov St., Novosibirsk, 630051
References
1. MacDonald M.I., Osadnik C.R., Bulfin L., Leahy E., Leong P., Shafuddin E. et al. MULTI-PHACET: multidimensional clinical phenotyping of hospitalised acute COPD exacerbations. ERJ Open Res. 2021;7(3):00198–2021. https://doi.org/10.1183/23120541.00198-2021.
2. Jafarinejad H., Moghoofei M., Mostafaei S., Salimian J., Azimzadeh Jamalkandi S., Ahmadi A. Worldwide prevalence of viral infection in AECOPD patients: A meta-analysis. Microb Pathog. 2017;113:190–196. https://doi.org/10.1016/j.micpath.2017.10.021.
3. Jang J.G., Ahn J.H., Jin H.J. Incidence and prognostic factors of respiratory viral infections in severe acute exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2021;16:1265–1273. https://doi.org/10.2147/COPD.S306916.
4. Lee H.W., Sim Y.S., Jung J.Y., Seo H., Park J.W., Min K.H. et al. A multicenter study to identify the respiratory pathogens associated with exacerbation of chronic obstructive pulmonary disease in Korea. Tuberc Respir Dis (Seoul). 2022;85(1):37–46. https://doi.org/10.4046/trd.2021.0080.
5. Polverino F., Kheradmand F. COVID-19, COPD, and AECOPD: Immunological, epidemiological, and clinical aspects. Front Med (Lausanne). 2021;7:627278. https://doi.org/10.3389/fmed.2020.627278.
6. Huebner S.T., Henny S., Giezendanner S., Brack T., Brutsche M., Chhajed P. et al. Prediction of acute COPD exacerbation in the Swiss multicenter COPD cohort study (TOPDOCS) by clinical parameters, medication use, and immunological biomarkers. Respiration. 2022;101(5):441–454. https://doi.org/10.1159/000520196.
7. Suissa S., Dell’Aniello S., Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax. 2012;67(11):957–963. https://doi.org/10.1136/thoraxjnl-2011-201518.
8. Zykov K.A., Ovcharenko S.I., Avdeev S.N., Zhestkov A.V., Il’kovich M.M., Nevzorova V.A. et al. Phenotypic characteristics of COPD patients with a smoking history in POPE-study in the Russian Federation. Pulmonologiya. 2020;30(1):42–52. (In Russ.) https://doi.org/10.18093/0869-0189-2020-30-1-42-52.
9. Rhodes K., Jenkins M., de Nigris E., Aurivillius M., Ouwens M. Relationship between risk, cumulative burden of exacerbations and mortality in patients with COPD: modelling analysis using data from the ETHOS study. BMC Med Res Methodol. 2022;22(1):150. https://doi.org/10.1186/s12874-022-01616-7.
10. Soe A.K., Avdeev S.N., Nuralieva G.S., Gaynitdinova V.V., Chuchalin A.G. Predictors of poor outcomes in acute exacerbations of chronic obstructive pulmonary disease. Pulmonologiya. 2018;28(4):446–452. (In Russ.) https://doi.org/10.18093/0869-0189-2018-28-4-446-452.
11. Luo Z., Zhang W., Chen L., Xu N. Prognostic Value of Neutrophil:Lymphocyte and Platelet:Lymphocyte Ratios for 28-Day Mortality of Patients with AECOPD. Int J Gen Med. 2021;14:2839–2848. https://doi.org/10.2147/IJGM.S312045.
12. Cao Y., Xing Z., Long H., Huang Y., Zeng P., Janssens J.P., Guo Y. Predictors of mortality in COPD exacerbation cases presenting to the respiratory intensive care unit. Respir Res. 2021;22(1):77. https://doi.org/10.1186/s12931-021-01657-4.
13. Bystritskaya E.V., Bilichenko T.N. The morbidity, disability, and mortality associated with respiratory diseases in the Russian Federation (2015–2019). Pulmonologiya. 2021;31(5):551–561. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-5-551-561.
14. Jones T.P.W., Brown J., Hurst J.R., Vancheeswaran R., Brill S. COPD exacerbation phenotypes in a real-world five year hospitalisation cohort. Respir Med. 2020;167:105979. https://doi.org/10.1016/j.rmed.2020.105979.
15. Ritchie A.I., Wedzicha J.A. Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations. Clin Chest Med. 2020;41(3):421–438. https://doi.org/10.1016/j.ccm.2020.06.007.
16. Li T., Gao L., Ma H.X., Wei Y.Y., Liu Y.H., Qin K.R. et al. Clinical value of IL-13 and ECP in the serum and sputum of eosinophilic AECOPD patients. Exp Biol Med (Maywood). 2020;245(14):1290–1298. https://doi.org/10.1177/1535370220931765.
17. Ji S., Dai M.Y., Huang Y., Ren X.C., Jiang M.L., Qiao J.P. et al. Influenza a virus triggers acute exacerbation of chronic obstructive pulmonary disease by increasing proinflammatory cytokines secretion via NLRP3 inflammasome activation. J Inflamm (Lond). 2022;19(1):8. https://doi.org/10.1186/s12950-022-00305-y.
18. Wronski S., Beinke S., Obernolte H., Belyaev N.N., Saunders K.A., Lennon M.G. et al. Rhinovirus-induced human lung tissue responses mimic chronic obstructive pulmonary disease and asthma gene signatures. Am J Respir Cell Mol Biol. 2021;65(5):544–554. https://doi.org/10.1165/rcmb.2020-0337OC.
19. Jang J.G., Ahn J.H., Jin H.J. Incidence and prognostic factors of respiratory viral infections in severe acute exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2021;16:1265–1273. https://doi.org/10.2147/COPD.S306916.
20. Thulborn S.J., Mistry V., Brightling C.E., Moffitt K.L., Ribeiro D., Bafadhel M. Neutrophil elastase as a biomarker for bacterial infection in COPD. Respir Res. 2019;20(1):170. https://doi.org/10.1186/s12931-019-1145-4.
21. Chakrabarti A., Mar J.S., Choy D.F., Cao Y., Rathore N., Yang X. et al. High serum granulocyte-colony stimulating factor characterises neutrophilic COPD exacerbations associated with dysbiosis. ERJ Open Res. 2021;7(3):00836–2020. https://doi.org/10.1183/23120541.00836-2020.
22. Chuchalin A.G., Avdeev S.N., Aisanov Z.R., Belevskiy A.S., Leshchenko I.V., Ovcharenko S.I., Shmelev E.I. Federal guidelines on diagnosis and treatment of chronic obstructive pulmonary disease. Pulmonologiya. 2022;32(3):356–392. (In Russ.) https://doi.org/10.18093/0869-0189-2022-32-3-356-392.
23. Weissler J.C., Adams T.N. Eosinophilic chronic obstructive pulmonary disease. Lung. 2021;199(6):589–595. https://doi.org/10.1007/s00408-021-00492-0.
24. Chen X.R., Wang D.X. Serum MCP-1 and NGAL play an important role in the acute inflammatory event of chronic obstructive pulmonary disease. COPD. 2021;18(4):425–431. https://doi.org/10.1080/15412555.2021.1954151.
25. Chanda D., Otoupalova E., Smith S.R., Volckaert T., De Langhe S.P., Thannickal V.J. Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med. 2019;65:56–69. https://doi.org/10.1016/j.mam.2018.08.004.
26. Zhang Y., Li Y., Ye Z., Ma H. Expression of matrix metalloproteinase-2, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and changes in alveolar septa in patients with chronic obstructive pulmonary disease. Med Sci Monit. 2020;26:e925278. https://doi.org/10.12659/MSM.925278.
27. Johansen M.D., Mahbub R.M., Idrees S., Nguyen D.H., Miemczyk S., Pathinayake P. et al. Increased SARS-CoV-2 infection, protease and inflammatory responses in COPD primary bronchial epithelial cells defined with single cell RNA-sequencing. Am J Respir Crit Care Med. 2022. https://doi.org/10.1164/rccm.202108-1901OC.
28. Baldi B.G., Fabro A.T., Franco A.C., Machado M.H.C., Prudente R.A., Franco E.T. et al. Clinical, radiological, and transbronchial biopsy findings in patients with long COVID-19: a case series. J Bras Pneumol. 2022;48(3):e20210438. https://doi.org/10.36416/1806-3756/e20210438.
29. Bafadhel M., Peterson S., De Blas M.A., Calverley P.M., Rennard S.I., Richter K., Fagerås M. Predictors of exacerbation risk and response to budesonide in patients with chronic obstructive pulmonary disease: a post-hoc analysis of three randomised trials. Lancet Respir Med. 2018;6(2):117–126. https://doi.org/10.1016/S2213-2600(18)30006-7.
30. Rana R., Huang T., Koukos G., Fletcher E.K., Turner S.E., Shearer A. et al. Noncanonical matrix metalloprotease 1-protease-activated receptor 1 signaling drives progression of atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38(6):1368–1380. https://doi.org/10.1161/ATVBAHA.118.310967.
Review
For citations:
Shpagina LA, Kotova OS, Shpagin IS, Gerasimenko DA, Kuznetsova GV, Karmanovskaya SA, Loktin EM, Rukavitsyna AA, Anikina EV, Kamneva NV, Likhenko-Logvinenko KV. Clinical and molecular features of virus-induced acute exacerbations of chronic obstructive pulmonary diseas. Meditsinskiy sovet = Medical Council. 2022;16(18):30-39. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-18-30-39