Preview

Meditsinskiy sovet = Medical Council

Advanced search

Postcovid syndrome, cardiovascular disorders

https://doi.org/10.21518/2079-701X-2022-16-18-141-146

Abstract

Coronavirus infection has become one of the biggest shocks of our time. Coronaviruses are viruses with a positive RNA chain, most often affecting the respiratory tract. The virus penetrates into human type II alveolar cells using receptors for angiotensin converting enzyme 2 (APF2). SARS-CoV uses specific host cell factors throughout its infection cycle. The virus replicates inside cells, distracting the body’s own cellular mechanisms, and binds the virion to the APF2 receptor. The number of COVID-19 patients is more than 100 million people. Many recovered people note the persistence of symptoms for several months after an acute illness. Most often, patients complain of shortness of breath, fatigue, general weakness, pain behind the sternum, palpitations. Many studies have clearly demonstrated the effect of COVID-19 on metabolic disorders, the development and progression of cardiovascular diseases and mortality. The studies have shown that inflammation is formed in the myocardium. Its pathogenesis is not fully elucidated. According to two main theories, APF2 plays an important role in myocardial damage, as well as a  hyperimmune response, which can independently lead to myocarditis. The frequency and prognostic effect of COVID-19 myocarditis are unknown. This article analyzes the current literature data on the epidemiology, pathogenesis and clinical manifestations of  postcovid syndrome, in  particular subacute COVID-19 in  the focus of  cardiovascular disorders. The search for relevant literature was carried out on the basis of Web of Science, PubMed, by keywords: long COVID-19, cardiovascular diseases, postacute COVID-19 syndrome, SARS-CoV-2. The analysis included systematic reviews, meta-analyses, clinical studies, literature reviews published over the past 2 years.

About the Authors

I. N. Redkina
Tyumen State Medical University
Russian Federation

Irina N. Redkina, Endocrinologist, Graduate Student of Endocrinology Course of Therapy Postgraduate Education Department

54, Odesskaya St., Tyumen, 625023



L. A. Suplotova
Tyumen State Medical University
Russian Federation

Lyudmila A. Suplotova, Dr. Sci. (Med.), Professor, Head of Endocrinology Course of Therapy Postgraduate Education Department

54, Odesskaya St., Tyumen, 625023



M. I. Bessonova
Tyumen Cardiology Research Center
Russian Federation

Marina I. Bessonova, Director of the Tyumen Cardiology Research Center, Honored Doctor of the Russian Federation

111, Melnikaite St., Tyumen, 625026



References

1. Fogarty H., Townsend L., Morrin H., Ahmad A., Comerford C., Karampini E. et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19(10):2546–2553. https://doi.org/10.1111/jth.15490.

2. Amirov N.B., Davletshina E.I., Vasilieva A.G., Fatykhov R.G. Postcovid syndrome: multisystem deficits. Vestnik Sovremennoi Klinicheskoi Mediciny. 2021;14(6):94–104. (In Russ.) https://doi.org/10.20969/VSKM.

3. Nalbandian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S. et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27:601–615. https://doi.org/10.1038/s41591-021-01283-z.

4. Augustin M., Schommers P., Stecher M., Dewald F., Gieselmann L., Gruell H. et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg Health Eur. 2021;6:100122. https://doi.org/10.1016/j.lanepe.2021.100122.

5. Hirschtick J.L., Titus A.R., Slocum E., Power L.E., Hirschtick R.E., Elliott M.R. et al. Population-based estimates of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) prevalence and characteristics. Clin Infect Dis. 2021;73:2055–2064. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc8240848.

6. Logue J.K., Franko N.M., McCulloch D.J., McDonald D., Magedson A., Wolf C.R. et al. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw Open. 2021;4:e210830. https://doi.org/10.1001/jamanetworkopen.2021.0830.

7. Whitaker M., Elliott J., Chadeau-Hyam M., Riley S., Darzi A, Cooke G, et al. Persistent symptoms following SARS-CoV-2 infection in a random community sample of 508,707 people. medRxiv. 2021.06.28.21259452. https://doi.org/10.1101/2021.06.28.21259452

8. Sudre C.H., Murray B., Varsavsky T., Graham M.S., Penfold R.S., Bowyer R.C. et al. Attributes and predictors of long COVID. Nat Med. 2021;27:626–631. https://doi.org/10.1038/s41591-021-01292-y.

9. Huang C., Huang L., Wang Y., Li X., Ren L., Gu X. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397:220–232. https://doi.org/10.1016/s0140-6736(20)32656-8.

10. Huang L., Yao Q., Gu X., Wang Q., Ren L., Wang Y. et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet. 2021;398:747–758. https://doi.org/10.1016/s0140-6736(21)01755-4.

11. Seeßle J., Waterboer T., Hippchen T., Simon J., Kirchner M., Lim A. et al. Persistent symptoms in adult patients one year after COVID-19: a prospective cohort study. Clin Infect Dis. 2022;74(7):1191–1198. https://doi.org/-10.1093/cid/ciab611.

12. Mahmud R., Rahman M.M., Rassel M.A., Monayem F.B., Sayeed S.J.B., Islam M.S. et al. Post-COVID-19 syndrome among symptomatic COVID-19 patients: a prospective cohort study in a tertiary care center of Bangladesh. PLoS ONE. 2021;16:e0249644. https://doi.org/10.1371/journal.pone.0249644.

13. Thompson E.J., Williams D.M., Walker A.J., Mitchell R.E., Niedzwiedz C.L., Yang T.C. et al. Risk factors for long COVID: analyses of 10 longitudinal studies and electronic health records in the UK. medRxiv. 2021.06.24.21259277. https://doi.org/10.1101/2021.06.24.21259277

14. Evans R.A., McAuley H., Harrison E.M., Shikotra A., Singapuri A., Sereno M. et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre prospective cohort study. Lancet Respir Med. 2021;9:1275–1287. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_conditionClinical_case_definition-2021.1.

15. Wu X., Liu X., Zhou Y., Yu H., Li R., Zhan Q. et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Resp Med. 2021;9:747–754. https://doi.org/10.1016/s2213-2600(21)00174-0.

16. Lyons D., Frampton M., Naqvi S., Donohoe D., Adams G., Glynn K. Fallout from the COVID-19 pandemic — should we prepare for a tsunami of post viral depression? Ir J Psychol Med. 2020;37:295–300. https://doi.org/10.1017/ipm.2020.40.

17. Islam M.F., Cotler J., Jason L.A. Post-viral fatigue and COVID-19: lessons from past epidemics. Fatigue Biomed Health Behav. 2020;8:61–69. Available at: https://www.tandfonline.com/action/showCitFormats?-doi=10.1080/21641846.2020.1778227.

18. Hotchin N., Read R., Smith D., Crawford D. Active Epstein-Barr virus infection in post-viral fatigue syndrome. J Infect. 1989;18:143–150. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1.

19. Bond P. A role for herpes simplex virus in the aetiology of chronic fatigue syndrome and related disorders. Med Hypotheses. 1993;40:301–308. https://doi.org/10.1016/0306-9877(93)90010-n.

20. Carod-Artal F.J. Post-Ebolavirus disease syndrome: what do we know? Expert Rev Anti Infect Ther. 2015;13:1185–1187. https://doi.org/10.1586/14787210.2015.1079128.

21. Libby P., Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41(32):3038–3044. https://doi.org/10.1093/eurheartj/ehaa623.

22. Long COVID: let patients help define long-lasting COVID symptoms. Nature. 2020;586:170. https://doi.org/10.1038/d41586-020-02796-2.

23. Horton R. Offline: COVID-19 is not a pandemic. Lancet. 2020;396(10255):874. https://doi.org/10.1016/s0140-6736(20)32000-6.

24. Butrova S.A. From the obesity epidemic to the diabetes epidemic. International Journal of Endocrinology. 2013;(2):19–24. (In Russ.) Available at: http://www.mif-ua.com/archive/article/35699.

25. Leskova I.V., Ershova E.V. Obesity in Russia: modern view in the light of a social problems. Obesity and Metabolism. 2019;16(1):20–26. (In Russ.) https://doi.org/10.14341/omet9988.

26. Grosso G. Obesity during COVID-19: an underrated pandemic? EClinicalMedicine. 2021;39:101062. Available at: https://www.thelancet.com/pdfs/journals/eclinm/PIIS2589-5370(21)00342-4.pdf.

27. Ritchie S., Connell J. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2007;17:319–326. https://doi.org/10.1016/j.numecd.2006.07.005.

28. Petrey A.C., Qeadan F., Middleton E.A., Pinchuk I.V., Campbell R.A., Beswick E.J. Cytokine release syndrome in COVID-19: Innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. J Leukoc Biol. 2021;109(1):55–66. https://doi.org/10.1002/jlb.3cova0820-410rrr.

29. Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., Delabranche X. et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–1098. https://doi.org/10.1007/s00134-020-06062-x.

30. Dong E., Du H., Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20:533–534. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1.

31. Drake T.M., Riad A.M., Fairfield C.J., Egan C., Knight S.R., Pius R. et al. Characterisation of in-hospital complications associated with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol UK: a prospective, multicentre cohort study. Lancet. 2021;398:223–237. https://doi.org/10.1016/s0140-6736(21)00799-6.

32. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/s0140-6736(20)30183-5.

33. Raman B., Bluemke D.A., Lüscher T.F., Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43(11):1157–1172. https://doi.org/10.1093/eurheartj/ehac031.

34. Inciardi R.M., Adamo M., Lupi L., Cani D.S., Di Pasquale M., Tomasoni D. et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020;41(19):1821–1829. https://doi.org/10.1093/eurheartj/ehaa388.

35. Hu Z., Li S., Song X. Cytokine storm with rapidly elevated interleukin-6 indicates sudden death in patients with critical COVID-19. Cytokine Growth Factor Rev. 2021;58:30–31. https://doi.org/10.1016/j.cytogfr.2020.08.001.

36. Chatrath N., Kaza N., Pabari P.A., Fox K., Mayet J., Barton C. et al. The effect of concomitant COVID-19 infection on outcomes in patients hospitalized with heart failure. ESC Heart Fail. 2020;7:4443–4447. https://doi.org/10.1002/ehf2.13059.

37. Alvarez-Garcia J., Lee S., Gupta A., Cagliostro M., Joshi A.A., Rivas-Lasarte M. et al. Prognostic impact of prior heart failure in patients hospitalized with COVID-19. J Am Coll Cardiol. 2020;76:2334–2348. https://doi.org/10.1016/j.jacc.2020.09.549.

38. Ayoubkhani D., Khunti K., Nafilyan V., Maddox T., Humberstone B., Diamond I., Banerjee A. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ. 2021;372:n693. https://doi.org/10.1136/bmj.n693.

39. Puntmann V.O., Carerj M.L., Wieters I., Fahim M., Arendt C., Hoffmann J. et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265–1273. http://doi.org/10.1001/jamacardio.2020.3557.

40. Kopanczyk R., Kumar N., Papadimos T. Post-Acute COVID-19 Syndrome for Anesthesiologists: A Narrative Review and a Pragmatic Approach to Clinical Care. J Cardiothorac Vasc Anesth. 2021;36(8):2727–2737. http://doi.org/10.1053/j.jvca.2021.09.051.

41. Fox S.E., Vander Heide R.S. COVID-19: the heart of the matter—pathological changes and a proposed mechanism. J Cardiovasc Pharmacol Ther. 2021;26:217–224. https://doi.org/10.1177/1074248421995356.

42. Lindner D., Fitzek A., Brauninger H., Aleshcheva G., Edler C., Meissner K. et al. Association of Cardiac Infection with SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020;(5):1281–1285. Available at: https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-03183-z.

43. Lindner D., Fitzek A., Bräuninger H., Aleshcheva G., Edler C., Meissner K. et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5(11):1281–1285. https://doi.org/10.1001/jamacardio.2020.3551.

44. Basso C., Leone O., Rizzo S., De Gaspari M., van der Wal A.C., Aubry M.C. et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020;41(39):3827–3835. https://doi.org/10.1093/eurheartj/ehaa664.

45. Halushka M.K., Vander Heide R.S. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol. 2021;50:107300. https://doi.org/10.1016/j.carpath.2020.107300.

46. Siripanthong B., Nazarian S., Muser D., Deo R., Santangeli P., Khanji M.Y. et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17:1463–1471. http://doi.org/10.1016/j.hrthm.2020.05.001.

47. Wu Q., Zhou L., Sun X., Yan Z., Hu C., Wu J. et al. Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection. Sci Rep. 2017;7:9110. http://doi.org/10.1038/s41598-017-09536-z.

48. Fried J.A., Ramasubbu K., Bhatt R., Topkara V.K., Clerkin K.J., Horn E. et al. The Variety of Cardiovascular Presentations of COVID-19. Circulation. 2020;141:1930–1936. http://doi.org/10.1161/CIRCULATIONAHA.120.047164.

49. Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N. et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181:1016–1035.e19. http://doi.org/10.1016/j.cell.2020.04.035.

50. Reynolds H.R., Adhikari S., Pulgarin C., Troxel A.B., Iturrate E., Johnson S.B. et al. Renin-Angiotensin-Aldosterone System Inhibitors and Risk of COVID-19. N Engl J Med. 2020;382:2441–2448. http://doi.org/10.1056/NEJMoa2008975.

51. Liu P.P., Blet A., Smyth D., Li H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation. 2020;142:68–78. http://doi.org/10.1161/CIRCULATIONAHA.120.047549.

52. Radin J.M., Quer G., Ramos E., Baca-Motes K., Gadaleta M., Topol E.J., Steinhubl S.R. Assessment of Prolonged Physiological and Behavioral Changes Associated With COVID-19 Infection. JAMA Netw Open. 2021;4(7):e2115959. http://doi.org/10.1001/jamanetworkopen.2021.15959.

53. Wong S., Fan B., Huang W., Chia Y. ST-segment elevation myocardial infarction in post-COVID-19 patients: A case series. Ann Acad Med Singap. 2021;50(5):425–430. http://doi.org/10.1097/CRD.0000000000000368.

54. Giustino G., Croft L.B., Stefanini G.G., Bragato R., Silbiger J.J., Vicenzi M. et al. Characterization of myocardial injury in patients with COVID-19. J Am Coll Cardiol. 2020;76:2043–2055. https://doi.org/10.1016/j.jacc.2020.08.069.

55. Bois M.C., Boire N.A., Layman A.J., Aubry M.C., Alexander M.P., Roden A.C. et al. COVID-19-associated nonocclusive fibrin microthrombi in the heart. Circulation. 2021;143:230–243. https://doi.org/10.1161/circulationaha.120.050754.

56. Nabors C., Sridhar A., Hooda U., Lobo S.A., Levine A., Frishman W.H., Dhand A. Characteristics and Outcomes of Patients 80 Years and Older Hospitalized With Coronavirus Disease 2019 (COVID-19). Cardiol Rev. 2021;29(1):39–42. http://doi.org/10.1097/CRD.0000000000000368.

57. Li X., Pan X., Li Y., An N., Xing Y., Yang F. et al. Cardiac injury associated with severe disease or ICU admission and death in hospitalized patients with COVID-19: A meta-analysis and systematic review. Crit Care. 2020;24:468. http://doi.org/10.1186/s13054-020-03183-z.

58. Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F. et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5:802–810. http://doi.org/10.1001/jamacardio.2020.0950.

59. Sims J.T., Krishnan V., Chang C.Y., Engle S.M., Casalini G., Rodgers G.H. et al. Characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in COVID-19. J Allergy Clin Immunol. 2021;147(1):107–111. https://doi.org/10.1016/j.jaci.2020.08.031.

60. Nagashima S., Mendes M.C., Camargo Martins A.P., Borges N.H., Godoy T.M., Miggiolaro A.F.R.D.S. et al. Endothelial dysfunction and thrombosis in patients with COVID-19 brief report. Arterioscler Thromb Vasc Biol. 2020;40(10):2404–2407. https://doi.org/10.1161/atvbaha.120.314860.

61. Pollack A., Kontorovich A.R., Fuster V., Dec G.W. Viral myocarditis — diagnosis, treatment options, and current controversies. Nat Rev Cardiol. 2015;12:670–680. https://doi.org/10.1038/nrcardio.2015.108.

62. Kim H.W., de Chantemèle E.J.B., Weintraub N.L. Perivascular adipocytes in vascular disease. Arterioscler Thromb Vasc Biol. 2019;39:2220–222. https://doi.org/10.1161/atvbaha.119.312304.

63. Blagova O., Varionchik N., Zaidenov V., Savina P., Sarkisova N. Anti-heart antibodies levels and their correlation with clinical symptoms and outcomes in patients with confirmed or suspected diagnosis COVID-19. Eur J Immunol. 2021;51:893–902. https://doi.org/10.1002/eji.202048930.

64. Richter A.G., Shields A.M., Karim A., Birch D., Faustini S.E., Steadman L. et al. Establishing the prevalence of common tissue-specific autoantibodies following severe acute respiratory syndrome coronavirus 2 infection. Clin Exp Immunol. 2021;205:99–105. https://doi.org/10.1111/cei.13623.

65. Franke C., Ferse C., Kreye J., Reincke S.M., Sanchez-Sendin E., Rocco A. et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun. 2021;93:415–419. https://doi.org/10.1016/j.bbi.2020.12.022.

66. Talla A., Vasaikar S.V., Lemos M.P., Moodie Z., Pebworth M.-P.L., Henderson K.E. et al. Longitudinal immune dynamics of mild COVID-19 define signatures of recovery and persistence. bioRxiv [Preprint]. 2021.05.26.442666. https://doi.org/10.1101/2021.05.26.442666.

67. von Meijenfeldt F.A., Havervall S., Adelmeijer J., Lundström A., Magnusson M., Mackman N. et al. Sustained prothrombotic changes in COVID-19 patients 4 months after hospital discharge. Blood Adv. 2021;5(3):756–759. https://doi.org/10.1182/bloodadvances.2020003968.

68. Martynov M.Yu., Bogolepova A.N. Endothelial dysfunction in COVID- 19 and cognitive impairment. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021;121(6):93–99. (In Russ.) https://doi.org/10.17116/jnevro202112106193.

69. Suzuki Y.J., Nikolaienko S.I., Shults N.V., Gychka S.G. COVID-19 patients may become predisposed to pulmonary arterial hypertension. Med Hypotheses. 2021;147:110483. https://doi.org/10.1016/j.mehy.2021.110483.

70. Vechi H.T., Maia L.R., Alves M.D.M. Late acute pulmonary embolism after mild Coronavirus Disease 2019 (COVID-19): a case series. Rev Inst Med Trop Sao Paulo. 2020;62:e63. https://doi.org/10.1590/s1678-9946202062063.


Review

For citations:


Redkina IN, Suplotova LA, Bessonova MI. Postcovid syndrome, cardiovascular disorders. Meditsinskiy sovet = Medical Council. 2022;16(18):141-146. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-18-141-146

Views: 532


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)