Risk factors for birth asphyxia
https://doi.org/10.21518/2079-701X-2022-16-19-21-28
Abstract
Introduction. Intrauterine hypoxia and asphyxia during childbirth are the leading causes of infant mortality in the structure of certain conditions arising in the perinatal period.
Purpose. To study the involvement of negative events for the fetus in the ante- and intranatal periods in the occurrence of perinatal asphyxia in newborns and identify the main modifiable risk factors that will allow formulating preventive strategies in the development of child hypoxia.
Materials and methods. A retrospective assessment of the course of the ante- and intranatal period was carried out according to 50 case histories. Nominal data are presented with indication of absolute and relative values. Sets of quantitative indicators are described by the values of the median (Me) and the lower and upper quartiles (Q1–Q3). The χ2 test was used to compare unrelated samples. Differences were considered statistically significant at p < 0.05. Statistical data processing was carried out using the Microsoft Office 2021 software package.
Results: In the group of children with moderate and severe asphyxia at birth, the median gestational age was 36 and 33 weeks. The main ante- and intranatal risk factors for asphyxia of newborns were established in the following percentage: fetoplacental insufficiency – 32%; premature rupture of membranes and medical abortions in history, 30% each; first pregnancy, anemia, obesity, hypertension, smoking, maternal age > 35 years, 18% each; isthmic-cervical insufficiency – 16%; history of antenatal death, threatened miscarriage, vaginitis, 14% each; acute respiratory infections during pregnancy, assisted reproductive technologies (IVF), uterine fibroids – 12% each; oligohydramnios – 8%; polyhydramnios – 6%.
Conclusion. The structure of factors that can contribute to the development of asphyxia in newborns is diverse. Understanding the involvement of modifiable risk factors determines the need to build a strategy and tactics to reduce their impact on the development of the pathology under consideration.
About the Authors
T. E. TaranushenkoRussian Federation
Tatiana E. Taranushenko, Dr. Sci. (Med.), Professor, Head of the Department of Pediatrics, Institute of Postgraduate Education; Leading Consultant
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
2a/1, Academician Kirensky St., Krasnoyarsk, 660074, Russia
N. A. Parshin
Russian Federation
Nikita A. Parshin, Postgraduate Student, Assistant of the Department-Center of Simulation Technologies; anesthesiologist-resuscitator
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
2a/1, Academician Kirensky St., Krasnoyarsk, 660074, Russia
A. A. Vaganov
Russian Federation
Anatoliy A. Vaganov, Postgraduate Student; Pediatrician
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
2a/1, Academician Kirensky St., Krasnoyarsk, 660074, Russia
T. V. Ovchinnikova
Russian Federation
Tatiana V. Ovchinnikova, Neonatologist
2a/1, Academician Kirensky St., Krasnoyarsk, 660074, Russia
References
1. Shilova N.A., Kharlamova N.V., Andreev A.V., Mezhinsky S.S., Panova I.A., Dudov P.R. Frequency of perinatal asphyxia and volume of provision of care to newborns in the delivery room. Neonatology: News, Opinions, Training. 2020;8(2):47–53. (In Russ.) https://doi.org/10.33029/2308-2402-2020-8-2-47-53.
2. Wardinger J.E., Ambati S. Placental Insufficiency. Treasure Island (FL): StatPearls Publishing; 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK563171/.
3. Anuriev A.M., Gorbachev V.I. Hypoxic-ischemic brain damage in premature newborns. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2019;119(8-2):63–69. (In Russ.) https://doi.org/10.17116/jnevro201911908263.
4. Mazarico E., Molinet-Coll C., Martinez-Portilla R.J., Figueras F. Heparin therapy in placental insufficiency: Systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2020;99(2):167–174. https://doi.org/10.1111/aogs.13730.
5. Mehar M.F., Khan M.A., Saleem R., Zafar F., Naqqash A.B., Shahid S., Hassan R. Risk factors of perinatal asphyxia at Nishtar Hospital Multan. Prof Med J. 2020;27(3):487–492. https://doi.org/10.29309/TPMJ/2020.27.3.3176.
6. Karelina O.B., Artymuk N.V. Risk factors for neonatal asphyxia in obese women. Fundamental and Clinical Medicine. 2016;1(2):6–11. (In Russ.) Available at: https://fcm.kemsmu.ru/jour/article/view/9.
7. Pintican D., Poienar A.A., Strilciuc S., Mihu D. Effects of maternal smoking on human placental vascularization: A systematic review. Taiwan J Obstet Gynecol. 2019;58(4):454–459. https://doi.org/10.1016/j.tjog.2019.05.004.
8. Ducsay C.A., Goyal R., Pearce W.J., Wilson S., Hu X.Q., Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev. 2018;98(3):1241–1334. https://doi.org/10.1152/physrev.00043.2017.
9. Gomella T., Eyal F.G., Bany-Mohammed F. (eds.). Gomella’s Neonatology: Management, Procedures, On¬Call Problems, Diseases, and Drugs. 8th ed. McGraw Hill; 2020.
10. Yung H.W., Cox M., Tissot van Patot M., Burton G.J. Evidence of endoplasmic reticulum stress and protein synthesis inhibition in the placenta of non-native women at high altitude. FASEB J. 2012;26(5):1970–1981. https://doi.org/10.1096/fj.11-190082.
11. Herrera C.A., Silver R.M. Perinatal Asphyxia from the Obstetric Standpoint: Diagnosis and Interventions. Clin Perinatol. 2016;43(3):423–438. https://doi.org/10.1016/j.clp.2016.04.003.
12. Pintican D., Poienar A.A., Strilciuc S., Mihu D. Effects of maternal smoking on human placental vascularization: A systematic review. Taiwan J Obstet Gynecol. 2019;58(4):454–459. https://doi.org/10.1016/j.tjog.2019.05.004.
13. Wong S.F., Chow K.M., Leung T.N., Ng W.F., Ng T.K., Shek C.C. et al. Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. Am J Obstet Gynecol. 2004;191(1):292–297. https://doi.org/10.1016/j.ajog.2003.11.019.
14. Yang Z., Wang M., Zhu Z., Liu Y. Coronavirus disease 2019 (COVID-19) and -pregnancy: a systematic review. J Matern Fetal Neonatal Med. 2022;35(8):1619–1622. https://doi.org/10.1080/14767058.2020.1759541.
15. Kuznetsov P.A., Kozlov P.V. Fetal hypoxia and neonatal asphyxia. Lechebnoe Delo. 2017;(4):9–15. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=32335632&ysclid=l92mhgu1f2284660402.
16. Torres-Muñoz J., Rojas C., Mendoza-Urbano D., Marín-Cuero D., Orobio S., Echandía C. Risk factors associated with the development of perinatal asphyxia in neonates at the Hospital Universitario del Valle, Cali, Colombia, 2010–2011. Biomedica. 2017;37(1 Suppl.):51–56. (In Spanish) https://doi.org/10.7705/biomedica.v37i1.2844.
17. Isenova S.Sh., Bodykov G.Zh., Lokshin V.N., Dzhusubalieva T.M., Baikoshkarova S.B., Karibaeva Sh.K. Features of the early neonatal period of newborns after IVF. Reproductive Medicine. 2020;(2):22–27. (In Russ.) https://doi.org/10.37800/RM2020-1-12.
18. Haliti A., Mustafa L., Bexheti S., Islami D., Bozalija A., Shabani R., Islami H. In Vitro Action of Meconium on Bronochomotor Tonus of Newborns with Meconium Aspiration Syndrome. Open Access Maced J Med Sci. 2018;6(6):992–996. https://doi.org/10.3889/oamjms.2018.244.
19. Nam N.H., Sukon P. Risk factors associated with stillbirth of piglets born from oxytocin-assisted parturitions. Vet World. 2020;13(10):2172–2177. https://doi.org/10.14202/vetworld.2020.2172-2177.
Review
For citations:
Taranushenko TE, Parshin NA, Vaganov AA, Ovchinnikova TV. Risk factors for birth asphyxia. Meditsinskiy sovet = Medical Council. 2022;(19):21-28. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-19-21-28