Preview

Meditsinskiy sovet = Medical Council

Advanced search

Modern view on the etiology and immunological aspects of pneumonia

https://doi.org/10.21518/ms2023-056

Abstract

Pneumonia is the most common and deadly nosology among all respiratory diseases associated with microorganisms. Despite advances in antibacterial and antiviral therapy, mortality due to pneumonia is not decreasing. It should be noted that the problem of infectious pathology has always been discussed only in narrow circles of specialists, which led to its underestimation, including during the pandemic of a new coronavirus infection. At present, scientific possibilities have not reached their perfection in the etiological diagnosis of pneumonia. Of no small concern is the lack of sections on immunology in the training program for general practitioners and pulmonologists and, as a result, the lack of knowledge by most medical specialists of the basics of the immune response in various infectious diseases, in particular, the differences in the immune response of a macroorganism in viral and bacterial infections, the stages of the immune response, differences between innate and adaptive immune responses, possibilities of immunocorrective therapy. Being followers  of the scientific school of pulmonology of academician N.S. Molchanov,  in this review, we evaluated the features of etiological factors and immune characteristics of the body on the course and out-comes of pneumonia, taking into account modern scientific knowledge. The current definition of pneumonia is formulated, the issues of the etiology of pneumonia from the perspective of the lung microbiome, the features of the immune response of the macroorganism in viral and bacterial pneumonia, the inconsistency of immune protection and the impact of comorbidity on this are covered in detail. Understanding the processes that lead to the disruption of the respiratory microbiome, the multiplication of pathobionts, the attachment of multiresistant microorganisms and the reactivity of the macroorganism will contribute to the development of new therapeutic approaches in the treatment of pneumonia.

About the Authors

A. A. Minakov
Military Medical Academy named after S.M. Kirov
Russian Federation

Alexey A. Minakov - Adjunct of the 1st Department (Advanced Physician Therapy) named after Academician N.S. Molchanov, Military Medical Academy named after S.M. Kirov.

6, Akademik Lebedev St., St Petersburg, 194044



V. V. Vakhlevskii
Military Medical Academy named after S.M. Kirov
Russian Federation

Vitalii V. Vakhlevskii - Adjunct of the Department of Faculty Therapy named after S.P. Botkin, Military Medical Academy named after S.M. Kirov.

6, Akademik Lebedev St., St Petersburg, 194044



N. I. Voloshin
Military Medical Academy named after S.M. Kirov
Russian Federation

Nikita I. Voloshin - Adjunct of the 1st Department (Advanced Physician Therapy) named after Academician N.S. Molchanov, Military Medical Academy named after S.M. Kirov.

6, Akademik Lebedev St., St Petersburg, 194044



M. A. Kharitonov
Military Medical Academy named after S.M. Kirov
Russian Federation

Mikhail A. Kharitonov - Dr. Sci. (Med.), Professor of the 1st Department and Clinic (Advanced Physician Therapy) named after Academician N.S. Molchanov - Military Medical Academy named after S.M. Kirov.

6, Akademik Lebedev St., St Petersburg, 194044



V. V. Salukhov
Military Medical Academy named after S.M. Kirov
Russian Federation

Vladimir V. Salukhov - Dr. Sci. (Med.), Associate Professor, Head of the 1st Department and Clinic (Advanced Physician Therapy) named after Academician N.S. Molchanov, Military Medical Academy named after S.M. Kirov.

6, Akademik Lebedev St., St Petersburg, 194044



V. V. Tyrenko
Military Medical Academy named after S.M. Kirov
Russian Federation

Vadim V. Tyrenko - Dr. Sci. (Med.), Professor, Head of the Department of Faculty Therapy named after S.P. Botkin, Military Medical Academy named after S.M. Kirov.

6, Akademik Lebedev St., St Petersburg, 194044



Yu. V. Rudakov
Military Medical Academy named after S.M. Kirov
Russian Federation

Yuri V. Rudakov - Cand. Sci. (Med.), Associate Professor of the 1st Department and Clinic (Advanced Physician Therapy) named after Academician N.S. Molchanov, Military Medical Academy named after S.M. Kirov.

6, Akademik Lebedev St., St Petersburg, 194044



E. N. Vakhlevskaya
Consultative and Diagnostic Polyclinic of the Leningrad Military District No. 104
Russian Federation

Evgeniya N. Vakhlevskaya - neurologist, Head of the Neurological Department, Consultative and Diagnostic Polyclinic of the Leningrad Military District No. 104.

3/5, Sadovaya St., St Petersburg, 190031



E. V. Alekhina
Military Medical Academy named after S.M. Kirov
Russian Federation

Ekaterina V. Alekhina - Cadet of the Navy Medical Faculty, Military Medical Academy named after S.M. Kirov.

6, Akademik Lebedev St., St Petersburg, 194044



References

1. Molchanov N.S. Clinic and treatment of acute pneumonia. Leningrad; 1971. 295 p. (In Russ.)

2. Avdeev S.N., Dekhnich A.V., Zaitsev A.A., Kozlov R.S., Rachina S.A., Rudnov V.A. et al. Clinical recommendations: community-acquired pneumonia in adults. Moscow; 2021. 126 p. (In Russ.) Available at: https://www.antibiotic.ru/files/306/kr654.pdf.

3. Stoma I.O. The Microbiome in Medicine. Мoscow: GEOTAR-Media; 2020. 320 p. (In Russ.) https://doi.org/10.33029/9704-5844-0-MIM-2020-1-320.

4. Bos L.D.J., Rylance J., Gordon S.B. The lung bacterial microbiome in community-acquired and nosocomial pneumonia. In: Cox M.J., Ege M.J., von Mutius E. (eds.). The Lung Microbiome (ERS Monograph). Sheffield, European Respiratory Society; 2019, pp. 188–194. https://doi.org/10.1183/2312508X.10016418.

5. Stoma I.O. Microbiome of the respiratory tract. Moscow: GEOTAR-Media; 2023. 104 p. (In Russ.)

6. Kharitonov M.A., Salukhov V.V., Kryukov E.V., Patsenko M.B., Rudakov Yu.V., Bogomolov А.B. et al. Viral pneumonia: a new look at an old problem (review). Meditsinskiy Sovet. 2021;(16):60–77. (In Russ.) https://doi.org/10.21518/2079-701X-2021-16-60-77.

7. Austrian R. The Gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol Rev. 1960;24(3):261–265. https://doi.org/10.1128/br.24.3.261-265.1960.

8. Tyapkina, D.A., Boroday A.A., Typayeva A.R., Semenova O.N., Naumova E.A. Laboratory and instrumental diagnostics of viral pneumonia (review). Saratov Journal of Medical Scientific Research. 2021;17(1):13–18. (In Russ.) Available at: https://ssmj.ru/2021/1/13.

9. Yakovenko O.N., Kravchenko N.A. Epidemiology features of community-acquired pneumonia. Siberian Medical Journal (Irkutsk). 2014;125(2):8–11. (In Russ.) Available at: https://cyberleninka.ru/article/n/osobennosti-epidemiologii-vnebolnichnyh-pnevmoniy.

10. Moroz V.V., Golubev A.M., Kuzovlev A.N. Nosocomial pneumonia. Selected issues in diagnosis and treatment. Moscow: Kreativnaya ekonomika; 2019; 238 p. (In Russ.) https://doi.org/10.18334/9785912922930.

11. Chuchalin A.G., Sinopalnikov A.I., Strachunsky L.S., Kozlov R.S., Rudnov V.A., Yakovlev S.V. et al. Nosocomial pneumonia in adults: practical recommendations on diagnosis, treatment and prevention. Medical supplementation. Pulmonologiya. 2005;(3):13–36. (In Russ.) https://doi.org/10.18093/0869-0189-2005-0-3-13-36.

12. Hong H.L., Hong S.B., Ko G.B., Huh J.W., Sung H., Do K.H. et al. Viral infection is not uncommon in adult patients with severe hospital-acquired pneumonia. PLoS ONE. 2014;9(4):e95865. https://doi.org/10.1371/journal.pone.0095865.

13. Dandachi D., Rodriguez-Barradas M.C. Viral pneumonia: etiologies and treatment. J Investig Med. 2018;66(6):957–965. https://doi.org/10.1136/jim-2018-000712.

14. Glinchikov V.I. Clinic of Spanish disease (From lectures given to students of the Military Medical Academy and the State Institute of Medical Knowledge in 1919–1920). Moscow, Petrograd: Gosudarstvennoe izdatelstvo; 1922. 78 p. (In Russ.)

15. Palacios G., Hornig M., Cisterna D., Savji N., Bussetti A.V., Kapoor V. et al. Streptococcus pneumoniae coinfection is correlated with the severity of H1N1 pandemic influenza. PLoS ONE. 2009;4(12):e8540. https://doi.org/10.1371/journal.pone.0008540.

16. Randolph A.G., Vaughn F., Sullivan R., Rubinson L., Thompson B.T., Yoon G. et al. Critically ill children during the 2009–2010 influenza pandemic in the United States. Pediatrics. 2011;128(6):e1450-1458. https://doi.org/10.1542/peds.2011-0774.

17. Avdeev S.N., Adamyan L.V., Alexeyeva E.I., Bagnenko S.F., Baranov A.A., Baranova N.N. et al. Temporary methodological recommendations: prevention, diagnosis and treatment of a new coronavirus infection (COVID-19) (version 17). Moscow; 2022. 260 p. (In Russ.) Available at: https://www.consultant.ru/document/cons_doc_LAW_347896/?ysclid=ldh4z9qlmc823781520.

18. Linscheid P., Seboek D., Nylen E.S., Langer I., Schlatter M., Becker K.L. et al. In vitro and in vivo calcitonin I gene expression in parenchymal cells: a novel product of human adipose tissue. Endocrinology. 2003;144(12):5578–5584. https://doi.org/10.1210/en.2003-0854.

19. Rodriguez-Morales A., Cardona-Ospina J.A., Gutierrez-Ocampo E., Villamizar-Pena R., Holguin-Rivera Y., Escalera-Antezana J.P. et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:1016–1023. https://doi.org/10.1016/j.tmaid.2020.101623.

20. Lansbury L., Lim B., Baskaran V., Lim W.S. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020;81(2):266–275. https://doi.org/10.1016/j.jinf.2020.05.046.

21. Baskaran V., Lawrence H., Lansbury L.E., Webb K., Safavi S., Zainuddin N.I., Huq T. et al. Co-infection in critically ill patients with COVID-19: an observational cohort study from England. J Med Microbiol. 2021;70(4):001350. https://doi.org/10.1099/jmm.0.001350.

22. Sharifipour E., Shams S., Esmkhani M., Khodadadi J., Fotouhi-Ardakani R., Koohpaei A. et al. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect Dis. 2020;20(1):646. https://doi.org/10.1186/s12879-020-05374-z.

23. Rozanova S.M., Korf M.V., Perevalova E.Yu., Sheveleva L.V., Oleinikova O.M., Beikin Ya.B. Secondary bacterial pneumonia in patients with COVID19: distribution and etiology. Klinicheskaia Mikrobiologiia i Antimikrobnaia Khimioterapiia. 2021;23(1):34–35. (In Russ.) Available at: https://www.antibiotic.ru/files/413/xxiii-makmah-tezisy.pdf.

24. Maksimova E.A., Kozlov A.V., Lyamin A.V., Zhestkov A.V., Gusyakova O.A., Zolotov M.O. Microflora of sputum and autopsy material of patients with COVID-19. Klinichescheskaya Laboratornaya Diagnostika. 2022;67(6):380–384. (In Russ.) Available at: https://doi.org/10.51620/0869-2084-2022-67-6-380-384.

25. Jia L., Xie J., Zhao J., Cao D., Liang Y., Hou X. et al. Mechanisms of Severe Mortality-Associated Bacterial Co-infections Following Influenza Virus Infection. Front Cell Infect Microbiol. 2017;7:338. https://doi.org/10.3389/fcimb.2017.00338.

26. Lee L.N., Dias P., Han D., Yoon S., Shea A., Zakharov V. et al. A mouse model of lethal synergism between influenza virus and Haemophilus influenzae. Am J Pathol. 2010;176(2):800–811. https://doi.org/10.2353/ajpath.2010.090596.

27. Egorov A. The problem of bacterial complications post respiratory viral infections. Microbiology Independent Research Journal (MIR Journal). 2018;5(1):1–11. (In Russ.) https://doi.org/10.18527/2500-2236-2018-5-1-1-11.

28. Kruglyakova L.V., Naryshkina S.V., Odireev A.N. Modern aspects of community-acquired pneumonia. Bulletin Physiology and Pathology of Respiration. 2019;(71):120–134. (In Russ.) https://doi.org/10.12737/article_5c89ac-c410e1f3.79881136.

29. Jung H.S., Kang B.J., Ra S.W., Seo K.W., Jegal Y., Jun J.B. et al. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection. Tuberc Respir Dis (Seoul). 2017;80(4):358–367. https://doi.org/10.4046/trd.2017.0044.r.

30. Cruveilhier L. Action du serum antipneumococcique au cours de la pneumonie et dans les complications de la grippe. Annales de l’Institut Pasteur. 1919;33:448–461.

31. Rabst R., Tschernig T. Perivascular capillaries in the lung: an important but neglected vascular bed in immune reactions? J Allergy Clin Immunol. 2002;110(2):209–214. https://doi.org/10.1067/mai.2002.126836.

32. Qiu H., Kuolee R., Harris G., Harris G., Rooijen N.V., Patel G.B., Chen W. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection. PLoS ONE. 2012;7(6):е40019. https://doi.org/10.1371/journal.pone.0040019.

33. Hartl D., Tirouvanziam R., Laval J., Greene C.M., Habiel D., Sharma L. et al. Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. J Innate Immun. 2018;10(5–6):487–501. https://doi.org/10.1159/000487057.

34. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–384. https://doi.org/10.1038/ni.1863.

35. xO`Neill L.A.J., Fitzgerald K.A., Bowie A.G. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol. 2003;24(6):286–289. https://doi.org/10.1016/s1471-4906(03)00115-7.

36. Peng J., Yuan Q., Lin B., Panneerselvam P., Wang X., Luan X.L. et al. SARM inhibits both TRIF – and MyD88-mediated AP-1 activation. Eur J Immunol. 2010;40(6):1738–1747. https://doi.org/10.1002/eji.200940034.

37. Kawai T., Akira S. Signaling to NF-kB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–469. https://doi.org/10.1016/j.molmed.2007.09.002.

38. Negishi H., Fujita Y., Yanai H., Sakaguchi S., Ouyang X., Shinohara M. et al. Evidence for licensing of IFN-gamma induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptordependent gene induction program. Proc Natl Acad Sci USA. 2006;103(41):15136–15141. https://doi.org/10.1073/pnas.0607181103.

39. Mellett M., Atzei P., Jackson R., Jackson R., O’Neil L.A., Moynagh P.N. Mal mediates TLR-induced activation of CREB and expression of IL-10. J Immunol. 2011;186(8):4925–4935. https://doi.org/10.4049/jimmunol.1002739.

40. Jones B.W., Means T.K., Heldwein K.A., Keen M.A., Hiil P.G., Belisle J.T., Fenton M.J. Different Toll-like receptor agonists induce distinct macrophage responses. J Leukoc Biol. 2001;69(6):1036–1044. Available at: https://pubmed.ncbi.nlm.nih.gov/11404392.

41. Dinarello C.A., Simon A., van der Meer J.W. Treating infl ammation by blocking interleukin-1 in broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633–652. https://doi.org/10.1038/nrd3800.

42. Wajant H., Pfizenmaier K., Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65. https://doi.org/10.1038/sj.cdd.4401189.

43. Swiecki M., Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15:471–485. https://doi.org/10.1038/nri3865.

44. Olson B.M., Sullivan J.A., Burlingham W.J. Interleukin 35: a key mediator of suppression and the propagation of infectious tolerance. Front Immunol. 2013;4:315. https://doi.org/10.3389/fimmu.2013.00315.

45. Conti H., Gaffen S. IL – 17 mediated immunity to the opportunistic fungal pathogen Candida albicans. J Immunol. 2015;195:780–788. https://doi.org/10.3389/fimmu.2013.00315.

46. Xue J., Schmidt S., Sander J., Draffenh A., Krebs W., Quester I. et al. Transcriptome – based network analysis reveals a spectrum model of humanm macrophages activation. Immunity. 2014;40:274–288. https://doi.org/10.1016/j.immuni.2014.01.006.

47. Von Lanzenauer S.H., Wolk K., Hoflich C., Kunz S., Grunberg B.H., Docke W.-D. et al. Interleukin-10 receptor-1 expression in monocyte-derived antigen-presenting cell populations: dendritic cells partially escape from IL-10`s inhibitory mechanisms. Genes Immunity. 2015;16:8–14. https://doi.org/10.1038/gene.2014.69.

48. Khaitov R.M. Immunology: structure and functions of the immune system: acquired state. Moscow: GEOTAR-Media; 2013. 280 p. (In Russ.)

49. Kallies A., Good-Jacobson K. Transcription Factor T-bet Orchestrates Lineage Development and Function in the Immune System. Trends Immunol. 2017;38:287–297. https://doi.org/10.1016/j.it.2017.02.003.

50. Nakayama T., Hirahara K., Onodera A., Endo Y., Hosokawa H., Shinoda K. et al. Th2 Cells in Health and Disease. Annu Rev Immunol. 2016;35:53–84. https://doi.org/10.1146/annurev-immunol-051116-052350.

51. Simbirtsev A.S. Cytokines in the pathogenesis and treatment of human diseases. St Petersburg: Foliant; 2018. 512 p. (In Russ.) Available at: https://znanium.com/catalog/document?id=350313&ysclid=lf9f8jzz-b2398418280#ant.

52. Kovarik P., Castiglia V., Ivin M., Ebner F. Type I Interferons in Bacterial Infections: A Balancing Act. Front Immunol. 2016;7:652. https://doi.org/10.3389/fimmu.2016.00652.

53. Subramanian K., Neill D.R., Malak H.A., Spelmink L., Khandaker S., Marchiori G.D.L. Pneumolysin binds to the mannose receptor C type 1 (MRC‐1) leading to anti‐inflammatory responses and enhanced pneumococcal survival. Nature Microbiology. 2019;4(1):62–70. https://doi.org/10.1038/s41564-018-0280-x.

54. Duffaut C., Zakaroff-Girard A., Bourlier V., Decaunes P., Maumus M., Chiotasso P. et al. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol. 2009;29:1608–1614. https://doi.org/10.1161/ATVBAHA.109.192583.

55. Salukhov V.V., Lopatin Ya.R., Minakov A.A. Adipsin – summing up large-scale results. Consilium Medicum. 2022;24(5):317–323. (In Russ.) https://doi.org/10.26442/20751753.2022.5.201280.

56. Bermudez E.A., Rifai N., Buring J., Manson J.A.E., Ridker P.M. Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb Vasc Biol. 2002;22(10):1668–1673. https://doi.org/10.1161/01.ATV.0000029781.31325.66.

57. Kirii H., Niwa T., Yamada Y., Wada H., Saito K., Iwakura Y. et al. Lack of Interleukin-1β decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(4):656–660. https://doi.org/10.1161/01.ATV.0000064374.15232.C3.

58. Kozlov V.K. Cytokinotherapy: pathogenetic orientation and clinical efficacy in infectious diseases. St Petersburg: Alter Ego; 2010. 148 p. (In Russ.)

59. Ip W., Hoshi N., Shouval D., Snapper S., Medzhitov R. Anti-inflammatory effect of IL – 10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513–519. https://doi.org/10.1126/science.aal3535.

60. Semenov B.F., Kaulen D.R., Balandin I.G. Cellular and molecular foundations of antiviral immunity. Moscow: Meditsina; 1982. 240 p. (In Russ.)

61. Vilchek J. Recent progress in elucidation of interferons – α/β and interferon – γ actions. Semin Hematol. 1993;30:9–10. https://doi.org/10.1159/000236685.

62. Kassirsky I.A. Questions of the clinic and therapy of acute pneumonia. Acute pneumonia. Moscow: Medgiz; 1961. 201 p. (In Russ.)

63. Horby P., Lim W.S., Emberson J.R., Mafham M., Bell J.L., Linsell L. et al. RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. N Engl J Med. 2021;384(8):693–704. https://doi.org/10.1056/NEJMoa2021436.

64. Chugunov A.A., Salukhov V.V., Dontsova O.V., Kharitonov M.A., Rudakov Yu.V., Bolekhan A.V., Arzhavkina L.G. Some aspects of the use of glucocorticoid drugs in the complex treatment of a new coronavirus infection. Medical Alliance. 2021;9(1):43–51. (In Russ.) Available at: http://med-alyans.spbniif.ru/index.php/Hahn/article/view/708.

65. Kryukov E.V., Salukhov V.V., Kotiv B.N., Ovchinnikov D.V., Andreychuk Yu.V., Denisov D.G. et al. Factors affecting the content of Ig G-antibodies to S-protein SARS-CoV-2 in the blood of reconvalescents after new coronaviral infection (COVID-19). Meditsinskiy Sovet. 2022;(4):51–65. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-4-51-65.


Review

For citations:


Minakov AA, Vakhlevskii VV, Voloshin NI, Kharitonov MA, Salukhov VV, Tyrenko VV, Rudakov YV, Vakhlevskaya EN, Alekhina EV. Modern view on the etiology and immunological aspects of pneumonia. Meditsinskiy sovet = Medical Council. 2023;(4):141-153. (In Russ.) https://doi.org/10.21518/ms2023-056

Views: 549


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)