Preview

Meditsinskiy sovet = Medical Council

Advanced search

Comparative study of myocardial damage in hantavirus and new coronavirus infection

https://doi.org/10.21518/ms2023-055

Abstract

Introduction. The study of myocardial damage in COVID-19 and hemorrhagic fever with renal syndrome (HFRS) is relevant, especially for HFRS-endemic regions.
Aim. Comparative study of clinical and electrocardiographic signs of myocardial damage in HFRS and COVID-19.
Materials and methods. A retrospective comparative analysis of clinical data, ECG and troponin test was performed in patients with HFRS (n = 62) and patients with COVID-19 (n = 30) of moderate and severe forms.
Results. The heart rate (HR) in the group of patients with HFRS is less than in the COVID-19 group (p < 0.05). The average value of systolic blood pressure in both groups refers to normotension, in the group of patients with HFRS is significantly lower than the same indicator in the group of COVID-19 patients. According to the results of an ECG study of patients with COVID-19 (n = 30), sinus rhythm was observed in 30 (100%), sinus tachycardia – in 2 (6.6%), sinus bradycardia – in 6 (20%), while differences in the frequency of sinus bradycardia in comparison with patients with HFRS are statistically significant. AV blockade of the 1st degree is observed in both diseases, in the group of HFRS with a higher frequency, but the differences are unreliable. Prolongation of the QT interval was found in patients in both groups, with coronavirus infection (13.3%) more often than with hantavirus infection (3%), the differences are statistically insignificant. ECG in patients with HFRS with lung damage shows signs of overload of the right atrium, unlike in patients with COVID-19. Troponin was positive in two patients in each group: two patients with HFRS had myocarditis, one patient with COVID-19 had acute coronary syndrome.
Conclusion. Myocardial damage in both hantavirus and new coronavirus infections has common features due to a systemic inflammatory reaction, electrolyte disorders, and significant differences.

About the Authors

G. A. Galieva
Bashkir State Medical University
Russian Federation

Guzel A. Galieva (Mukhetdinova), Dr. Sci. (Med.), Professor of the Department of Faculty Therapy 

3, Lenin St., Ufa, 450008



G. Kh. Mirsaeva
Bashkir State Medical University
Russian Federation

Gulchagra Kh. Mirsaeva, Dr. Sci. (Med.), Professor, Head of the Department of Faculty Therapy 

3, Lenin St., Ufa, 450008



R. M. Fazlyeva
Bashkir State Medical University
Russian Federation

Raysa M. Fazlyeva, Dr. Sci. (Med.), Professor of the Department of Faculty Therapy 

3, Lenin St., Ufa, 450008



E. R. Kamaeva
Bashkir State Medical University
Russian Federation

Elvira R. Kamaeva, Cand. Sci. (Med.), Associate Professor of the Department of Faculty Therapy 

3, Lenin St., Ufa, 450008



O. L. Andrianova
Bashkir State Medical University
Russian Federation

Olga L. Andrianova, Cand. Sci. (Med.), Associate Professor of the Department of Faculty Therapy 

3, Lenin St., Ufa, 450008



D. I. Masalimova
Bashkir State Medical University
Russian Federation

Daniya I. Masalimova, Student of the Faculty of Medicine 

3, Lenin St., Ufa, 450008



A. Kh. Islamgulov
Bashkir State Medical University
Russian Federation

Almaz Kh. Islamgulov, Student of the Faculty of Pediatrics 

3, Lenin St., Ufa, 450008



V. V. Nikulina
Bashkir State Medical University
Russian Federation

Valeria V. Nikulina, Student of the Faculty of Pediatrics 

3, Lenin St., Ufa, 450008



A. R. Imaeva
Bashkir State Medical University
Russian Federation

Alina R. Imaeva, Student of the Faculty of Pediatrics 

3, Lenin St., Ufa, 450008



References

1. Maleev V.V., Tokmalaev A.K., Kozhevnikova G.M., Golub V.P., Polovinkina N.A., Kharlamova T.V. et al. Hantavirus infection. Achievements and challenges. Infectious Diseases. 2021;19(1):110–118. (In Russ.) https://doi.org/10.20953/1729-9225-2021-1-110-118.

2. Morozov V.G., Ishmukhametov A.A., Dzagurova T.K., Tkachenko E.A. Clinical manifestations of hemorrhagic fever with renal syndrome in Russia. Meditsinskiy Sovet. 2017;(5):156–161. (In Russ.) https://doi.org/10.21518/2079-701X-2017-5-156-161.

3. Hukić M., Tulumović D., Calkić L. The renal failure and capillary leak during the acute stage of (Dobrava) DOB and PUU (Puumala) infection. Med Arh. 2005;59(4):227–230. Available at: https://pubmed.ncbi.nlm.nih.gov/16018388/.

4. Fazlyeva R.M., Mukhetdinova G.A. Pathology of the lungs in hemorrhagic fever with renal syndrome. Kazan Medical Journal. 2011;92(2):237–240. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=16219780.

5. Riquelme R. Hantavirus. Semin Respir Crit Care Med. 2021;42(6):822–827. https://doi.org/10.1055/s-0041-1733803.

6. Manakhov K.M., Bagautdinova L.I., Malinin O.V., Dudarev M.V., Sarksyan D.S., Ivanov V.G. et al. Dynamics of n-terminal fragment of the brain natriuretic peptide precursor serum concentration in patients with hemorrhagic fever with renal syndrome. Bashkortostan Medical Journal. 2021;16(2):5–11. (In Russ.) Available at: https://medvestb.elpub.ru/jour/article/view/729.

7. Evseev A.N. Morphological changes in the heart in hemorrhagic fever with renal syndrome. Far Eastern Journal of Infectious Pathology. 2002;(1):58–60. (In Russ.)

8. Kilin D.A., Dudarev M.V., Malinin O.V., Sarksyan D.C., Anikaev V.P. Structural and functional features of acute myocardial injury in new coronavirus infection. Bashkortostan Medical Journal. 2021;16(3):80–85. (In Russ.) Available at: https://medvestb.elpub.ru/jour/article/view/765.

9. Omar T., Karakayalı M., Perincek G. Assessment of COVID-19 deaths from cardiological perspective. Acta Cardiol. 2022;77(3):231–238. https://doi.org/10.1080/00015385.2021.1903704.

10. Izquierdo-Marquisá A., Cubero-Gallego H., Aparisi Á., Vaquerizo B., RibasBarquet N. Myocardial Injury in COVID-19 and Its Implications in Shortand Long-Term Outcomes. Front Cardiovasc Med. 2022;9:901245. https://doi.org/10.3389/fcvm.2022.901245.

11. Israilov R., Ergasheva Z. Morphological manifestations of myocardial lesion in COVID-19. International Journal of Scientific Pediatrics. 2022;(1):46–52. (In Russ.) https://doi.org/10.56121/2181-2926-2022-1-46-52.

12. Mukhetdinova G.A., Fazlyeva R.M., Ibragimova L.A., Mirsaeva G.Kh., Tutelyan A.V., Stepanov O.G., Khasanova G.M. Cardiovascular characteristics of patients with hemorrhagic fever with renal syndrome. Infectious Diseases. 2018;16(4):48–54. (In Russ.) https://doi.org/10.20953/1729-9225-2018-4-48-54.

13. Valishin D.A., Murzabaeva R.T., Galimov R.R., Galieva A.T., Galieva R.A., Shaikhullina L.R. et al. Clinical and laboratory parallels in case of new coronavirus infection COVID-19 and hemorragic fever with renal syndrome. Bashkortostan Medical Journal. 2020;15(3):86–90. (In Russ.) Available at: https://medvestb.elpub.ru/jour/article/view/545.

14. Connolly-Andersen A.M., Hammargren E., Whitaker H., Eliasson M., Holmgren L., Klingström J., Ahlm C. Increased risk of acute myocardial infarction and stroke during hemorrhagic fever with renal syndrome: a self-controlled case series study. Circulation. 2014;129(12):1295–1302. https://doi.org/10.1161/CIRCULATIONAHA.113.001870.

15. Zhuravleva N.V., Babokin V.E., Barsukova E.V., Karzakova L.M., Fomina R.V., Komelyagina N.A. et al. The effect of COVID-19 on myocardial damage: a clinical case. Acta Medica Eurasica. 2022;(2):31–39. (In Russ.) https://doi.org/10.47026/2413-4864-2022-2-31-39.

16. Del Prete A., Conway F., Della Rocca D.G., Biondi-Zoccai G., De Felice F., Musto C. et al. COVID-19, Acute Myocardial Injury, and Infarction. Card Electrophysiol Clin. 2022;14(1):29–39. https://doi.org/10.1016/j.ccep.2021.10.004.

17. Davydova L.A., Ostapchenko D.A., Tsarenko S.V., Gutnikov A.I., Arbolishvili G.N., Kovzel V.A. Acute Myocardial Infarction Complicating Coronavirus Infection (Case Report). General Reanimatology. 2022;18(5):18–23. https://doi.org/10.15360/1813-9779-2022-5-18-23.

18. Romero J., Gabr M., Diaz J.C., Purkayastha S., Gamero M.T., Reynbakh O. et al. Electrocardiographic Features of Patients with COVID-19: An Updated Review. Card Electrophysiol Clin. 2022;14(1):63–70. https://doi.org/10.1016/j.ccep.2021.10.006.

19. Pavlov V.N., Fazlyeva R.M., Mirsaeva G.Kh., Mukhetdinova G.A., Mavzyutova G.A., Izmaylov A.A. et al. Hemorrhagic fever with renal syndrome. Actual questions of pathogenesis, clinic, diagnosis and treatment. Moscow: GEOTAR-Media; 2019. 160 p. (In Russ.).

20. Duca Ș.T., Chetran A., Miftode R.Ș., Mitu O., Costache A.D., Nicolae A. et al. Myocardial Ischemia in Patients with COVID-19 Infection: Between Pathophysiological Mechanisms and Electrocardiographic Findings. Life (Basel). 2022;12(7):1015. https://doi.org/10.3390/life12071015.

21. Sukmarova Z.N., Demyanenko A.V., Gudantov R.B. Topicality of pulmonary heart disease against under conditions of the COVID-19 pandemic. Military Medical Journal. 2021;342(7):34–40. (In Russ.) https://doi.org/10.52424/00269050_2021_342_7_34.

22. Poteshkina N.G., Krylova N.S., Karasev A.A., Nikitina T.A., Svanadze A.M., Beloglazova I.P. et al. Right heart condition in patients with COVID-19 pneumonia. Russian Journal of Cardiology. 2021;26(11):4733. https://doi.org/10.15829/1560-4071-2021-4733.

23. Bursi F., Santangelo G., Sansalone D., Valli F., Vella A.M., Toriello F. et al. Prognostic utility of quantitative offline 2D-echocardiography in hospitalized patients with COVID-19 disease. Echocardiography. 2020;37(12):2029–2039. https://doi.org/10.1111/echo.14869.

24. Kaeley N., Mahala P., Walia R. Electrocardiographic Abnormalities predicting mortality in COVID-19 pneumonia patients. J Family Med Prim Care. 2022;11(5):2014–2018. https://doi.org/10.4103/jfmpc.jfmpc_1764_21.

25. Chorin E., Dai M., Shulman E., Wadhwani L., Bar-Cohen R., Barbhaiya C. et al. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med. 2020;26(6):808–809. https://doi.org/10.1038/s41591-020-0888-2.

26. Berezovskaya G.A., Petrishchev N.N., Volkova E.V., Karpenko M.A., Khalimov Yu.Sh. Defeat of the cardiovascular system in the new coronavirus infection COVID-19. Cardiology: News, Opinions, Training. 2022;10(4):37–47. (In Russ.) https://doi.org/10.33029/2309-1908-2022-10-4-37-47.

27. Kim N.H., Cho J.G., Ahn Y.K., Lee S.U., Kim K.H., Cho J.H. et al. A case of torsade de pointes associated with hypopituitarism due to hemorrhagic fever with renal syndrome. J Korean Med Sci. 2001;16(3):355–359. https://doi.org/10.3346/jkms.2001.16.3.355.

28. Shukla A.K., Banerjee M. Angiotensin-Converting-Enzyme 2 and ReninAngiotensin System Inhibitors in COVID-19: An Update. High Blood Press Cardiovasc Prev. 2021;28(2):129–139. https://doi.org/10.1007/s40292-021-00439-9.

29. Khashkhusha T.R., Chan J.S.K., Harky A. ACE inhibitors and COVID-19: We don’t know yet. J Card Surg. 2020;35(6):1172–1173. https://doi.org/10.1111/jocs.14582.


Review

For citations:


Galieva GA, Mirsaeva GK, Fazlyeva RM, Kamaeva ER, Andrianova OL, Masalimova DI, Islamgulov AK, Nikulina VV, Imaeva AR. Comparative study of myocardial damage in hantavirus and new coronavirus infection. Meditsinskiy sovet = Medical Council. 2023;(6):44-50. (In Russ.) https://doi.org/10.21518/ms2023-055

Views: 473


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)