Tonotopic fitting of the sound processor cochlear implant in normal cochlea anatomy
https://doi.org/10.21518/ms2023-125
Abstract
Introduction. Cochlear implantation is very effective due to the known tonotopic organization of the cochlea. These data are used in the distribution of signals along the channels of the cochlear implant electrode. The more accurate and natural the stimulation of the auditory nerve fibers, the better the perception of speech, sounds and speech intelligibility.
The aim of the study was to compare the clinical and anatomical settings of the cochlear implant processor.
Materials and methods. The study included 63 patients aged 2 to 60 years using cochlear implantation system, implants with a standard long electrode array (31.5 mm). All participants underwent computed tomography (CT) of the temporal bones with a step of 0.6 mm or less. CT data were processed using Otoplan and Sliser 3D software. The geometric dimensions of the cochlea, the length of the cochlear canal, the angular position and tonotopic frequency of each electrode were calculated, and a 3D reconstruction of the cochlea and electrode was built.
Results. The correction of the frequency filters of the electrodes and the anatomical adjustment of the processor were performed according to the data obtained in the Otoplan program. A comparison was made between the clinical and anatomical setting. After the redistribution of frequency filters, patients noted a more natural sound, improved speech intelligibility. Thus, with anatomical adjustment, an exact correspondence is achieved between the central frequency of each electrode channel and the tonotopic frequency of the cochlear zone, individually determined by computed tomography.
Conclusions. A new tool has appeared that allows you to significantly improve the quality and provide an individual approach to setting up processors after cochlear implantation.
About the Authors
S. V. LevinRussian Federation
Sergey V. Levin, Cand. Sci. (Med.), Researcher
9, Bronnitskaya St., St Petersburg, 190013, Russia
41, Kirochnaya St., St Petersburg, 191015, Russia
A. S. Lilenko
Russian Federation
Andrey S. Lilenko, Cand. Sci. (Med.), Senior Researcher
9, Bronnitskaya St., St Petersburg, 190013, Russia
E. A. Levina
Russian Federation
Elena A. Levina, Cand. Sci. (Med.), Researcher
9, Bronnitskaya St., St Petersburg, 190013, Russia
V. E. Kuzovkov
Russian Federation
Vladislav E. Kuzovkov, Dr. Sci. (Med.), Deputy Director for Innovation
9, Bronnitskaya St., St Petersburg, 190013, Russia
M. Shukuryan
Armenia
Mikayel Shukuryan, Otorhinolaryngologist, Postgraduate Student of the Department
2, Koryun St., Yerevan, 0025, Armenia
A. E. Pashkova
Russian Federation
Aleksandra Е. Pashkova, Research Associate
2, Abricosovskii Lane, Moscow, 119991, Russia
V. A. Voronov
Russian Federation
Victor A. Voronov, Cand. Sci. (Med.), Associate Professor
41, Kirochnaya St., St Petersburg, 191015, Russia
References
1. Kuzovkov V., Sugarova S., Lilenko A., Preobrazhenskaya Y., Kaliapin D. Cochlear implantation surgical stage in children with congenital syndromic deafness. Folia Otorhinolaryngologiae et Pathologiae Respiratoriae 2020;26(4):30–37. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=44491193.
2. Mileshina N.A., Fedoseev V.I., Volodkina V.V. Peculiarities of management of patients after cochlear implantation with the consequences of injuries of the temporo-parietal region. Folia Otorhinolaryngologiae et Pathologiae Respiratoriae. 2021;27(3):77–84. (In Russ.) https://doi.org/10.33848/foliorl23103825-2021-27-3-77-84.
3. Levin S.V., Kuzovkov V.E., Levina E.A., Shaporova A.V., Sugarova S.B. Cochlear implant fitting according to the individual anatomical peculiarities. In: Yanov Yu.K., Ryazantsev S.V. (eds.). Materials XX congress otorhinolaryngologists Russia. Moscow, September 6–9, 2021. St Petersburg: Poliforum Grupp; 2021, pp. 222–223. (In Russ.) Available at: https://otolar-centre.ru/images/pdf/Abstracts__XX_Congress_Otorhinolaryngologists_2021.pdf.
4. Kuzovkov V.E., Chernushevich I.I., Sugarova S.B., Lilenko A.S., Kalyapin D.D., Luppov D.S. Algorithm of diagnostics and surgery stage of cochlear implantation in patients with various congenital deafness etiology. Rossiiskaya Otorinolaringologiya. 2022;21(2):45–50. (In Russ.) https://doi.org/10.18692/1810-4800-2022-2-45-50.
5. Hardy M. The length of the organ of corti in man. Am J Anat. 1938;62:291–311. https://doi.org/10.1002/aja.1000620204.
6. Guild S. A graphic reconstruction method for the study of the organ of corti. Anat Rec. 1921;22:140–157. https://doi.org/10.1002/ar.1090220205.
7. Schuknecht H. Techniques for study of cochlear function and pathology in experimental animals: development of the anatomical frequency scale for the Cat. Arch Otolaryngol. 1953;58(4):377–397. https://doi.org/10.1001/archotol.1953.00710040399001.
8. Takagi A., Sando I. Computer-aided three-dimensional reconstruction: a method of measuring temporal bone structures including the length of the cochlea. Ann Otol Rhinol Laryngol. 1989;98(7 Pt 1):515–522. https://doi.org/10.1177/000348948909800705.
9. Ketten D., Skinner M., Wang G., Vannier M., Gates G., Neely J. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Oto Rhinol Laryngol. 1998;175:1–16. Available at: https://pubmed.ncbi.nlm.nih.gov/9826942/.
10. Escudé B., James C., Deguine O., Cochard N., Eter E., Fraysse B. The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurootol Suppl. 2006;(1):27–33. https://doi.org/10.1159/000095611.
11. Alexiades G., Dhanasingh A., Jolly C. Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol. 2015;36(5):904–907. https://doi.org/10.1097/MAO.0000000000000620.
12. Canfarotta M., Dillon M., Buss E., Pillsbury H., Brown K., O’Connell B. Validating a new tablet-based tool in the determination of cochlear implant angular insertion depth. Otol Neurotol. 2019;40(8):1006–1010. https://doi.org/10.1097/MAO.0000000000002296.
13. Kats L.K., Mitrofanova T.V. Some aspects of morphometry of the human inner ear. Forcipe. 2022;5(3):33–44. (In Russ.) Available at: https://ojs3.gpmu.org/index.php/forcipe/article/view/5484.
14. Asadi H., Mohamed S., Lim C.P., Nahavandi S., Nalivaiko E. Semicircular canal modeling in human perception. Rev Neurosci. 2017;28(5):537–549. https://doi.org/10.1515/revneuro-2016-0058.
15. Würfel W., Lanfermann H., Lenarz T., Majdani O. Cochlear length determination using cone beam computed tomography in a clinical setting. Hear Res. 2014;(316):65–72. https://doi.org/10.1016/j.heares.2014.07.013.
16. Verbist B.M., Ferrarini L., Briaire J.J., Zarowski A., Admiraal-Behloul F., Olofsen H. et al. Anatomic considerations of cochlear morphology and its implications for insertion trauma in cochlear implant surgery. Otol Neurotol. 2009;30(4):471–477. https://doi.org/10.1097/MAO.0b013e3181a32c0d.
17. Levin S.V., Kuzovkov V.E., Levina E.A., Pudov N.V. Rehabilitation of patients with a cochlear implant using artificial intelligence algorithms. Journal of Hearing Science. 2022;12(1):183–184. Available at: https://elibrary.ru/ossatt?ysclid=lgp4jh9hwt75362485.
18. Svirsky M.A., Talavage T.M., Sinha S., Neuburger H., Azadpour M. Gradual adaptation to auditory frequency mismatch. Hear Res. 2015;322:163–170. https://doi.org/10.1016/j.heares.2014.10.008.
19. Yanov Y.K., Levin S.V., Vaсhrushev S.G., Narkevich A.N., Kuzovkov V.E., Rossiev D.A. et al. Rehabilitation of deaf children after cochlear implantation using an intelligent neural net system. Medical Academic Journal. 2016;16(1):90–96. (In Russ.) https://doi.org/10.17816/MAJ16190-96.
20. Li H., Helpard L., Ekeroot J., Rohani S.A., Zhu N., Rask-Andersen H., Ladak H.M., Agrawal S. Three-dimensional tonotopic mapping of the human cochlea based on synchrotron radiation phase-contrast imaging. Sci Rep. 2021;11:4437. Available at: https://www.nature.com/articles/s41598-021-83225-w.
Review
For citations:
Levin SV, Lilenko AS, Levina EA, Kuzovkov VE, Shukuryan M, Pashkova AE, Voronov VA. Tonotopic fitting of the sound processor cochlear implant in normal cochlea anatomy. Meditsinskiy sovet = Medical Council. 2023;(7):124-131. (In Russ.) https://doi.org/10.21518/ms2023-125