Preview

Meditsinskiy sovet = Medical Council

Advanced search

Cardiovascular pathology and intestinal microbiome relationship: potential targets of pharmacotherapy

https://doi.org/10.21518/ms2023-158

Abstract

Violation of the intestinal microbiota is an important component in the pathogenesis of many chronic systemic diseases, which are based on chronic inflammation, changes in cytokine secretion, increased insulin resistance, microcirculation disorders, namely: obesity, diabetes mellitus (DM), atherosclerosis, chronic heart failure (CHF). The article clarifies the importance of the main intestinal metabolites: short-chain fatty acids (SCFAs), trimethylamine (TMA) and its oxide (TMAO) in the normal functioning of theintestineheart”, “intestineliver”, “intestinepancreasaxes, and also analyzes in detail the mechanisms of their dysfunction and the consequences of these disorders. The participation of the intestinal microbiota in the regulation of carbohydrate metabolism in patients with diabetes mellitus due to the activation of the synthesis of incretin hormones produced by the SCFAs (incretin effect) is considered. The role of lipopolysaccharide in the activation of proinflammatory cytokines and reduction of incretin response is shown. It was noted that violation of epithelial integrity leads to increased endotoxin intake into the blood, increased chronic inflammation, chronic dyscirculation and potentiation of atherosclerosis. A decrease in the content of butyrate-producing bacteria that provide anti-inflammatory mechanisms in the intestinal microbiota of CHF patients is an unfavorable factor that worsens the prognosis of the disease. An important modern aspect of cardiodiabetology is the study of the effect of intestinal dysbiosis on the production of a number of active metabolites, as well as the study of possible ways of pharmacological correction of existing disorders. It has been shown that probiotics can suppress inflammation, protect and restore the intestinal mucosal barrier, as well as improve intestinal function, which is important for the complex therapy of both diabetes and cardiovascular diseases. In DM, the use of incretin therapy, which contributes to the correction of the composition of the microbiota, is promising and pathogenetically justified. 

About the Authors

Y. A. Sorokina
Privolzhsky Research Medical University
Russian Federation

Yulia A. Sorokina, Cand. Sci. (Biol.), Associate Professor of the Department of General and Clinical Pharmacology

10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603950



N. A. Petunina
Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Nina A. Petunina, Corr. Member RAS, Dr. Sci. (Med.), Professor, Head of Department of Endocrinology of N.V. Sklifosovsky

8, Bldg. 2, Trubetskaya St., Moscow, 119991



S. D. Sinyushkina
Privolzhsky Research Medical University
Russian Federation

Snezhana D. Sinyushkina, Student

10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603950



A. V. Gorinova
Privolzhsky Research Medical University
Russian Federation

Alena V. Gorinova, Student

10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603950



M. I. Pryazhnikova
Privolzhsky Research Medical University
Russian Federation

Maria I. Pryazhnikova, Student

10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603950



S. A. Sukhanov
Privolzhsky Research Medical University
Russian Federation

Sergey A. Sukhanov, Resident

10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603950



A. S. Rudakov
Privolzhsky Research Medical University
Russian Federation

Artem S. Rudakov, Student

10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603950



O. V. Zanozina
Privolzhsky Research Medical University
Russian Federation

Olga V. Zanozina, Professor of the Department of Hospital Therapy and General Medical Practice named after V.G. Vogralik

10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603950



References

1. Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.Ш. Кишечная микробиота как фактор риска развития ожирения и сахарного диабета 2-го типа. Терапевтический архив. 2020;92(10):97–104. https://doi.org/10.26442/ 00403660.2020.10.000778. Demidova T.Y., Lobanova K.G., Oinotkinova O.S. Gut microbiota is a factor of risk for obesity and type 2 diabetes. Terapevticheskii Arkhiv. 2020;92(10):97–104. (In Russ.) https://doi.org/10.26442/00403660.2020. 10.000778.

2. Черникова Н.А., Камынина Л.Л., Аметов А.С. Кардиометаболическая оценка вариабельности гликемии у пациентов с сахарным диабетом 2 типа: роль глюкокардиомониторирования. Кардиология. 2020;60(5):100–106. https://doi.org/10.18087/cardio.2020.5.n902. Chernikova N.A., Kamynina L.L., Ametov A.S. The сardiometabolic assessment of the glycemic variability in patients with diabetes mellitus: the role of the glucocardiomonitoring. Kardiologiya. 2020;60(5):100–106. (In Russ.) https://doi.org/10.18087/cardio.2020.5.n902.

3. Brown J.M., Hazen S.L. The Gut Microbial Endocrine Organ: Bacterially Derived Signals Driving Cardiometabolic Diseases. Annu Rev Med. 2015;66(1):343–359. https://doi.org/10.1146/annurev-med-060513-093205.

4. Noce A., Marrone G., Di Daniele F., Ottaviani E., Wilson Jones G., Bernini R. et al. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients. 2019;11(5):1073. https://doi.org/10.3390/nu11051073.

5. Tang W.H.W., Kitai T., Hazen S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ Res. 2017;120(7):1183–1196. https://doi.org/10.1161/ CIRCRESAHA.117.309715.

6. Chang P.V., Hao L., Offermanns S., Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014;111(6):2247–2252. https://doi. org/10.1073/pnas.1322269111.

7. Wang H., Hou L., Kwak D., Fassett J., Xu X., Chen A. et al. Increasing Regulatory T Cells With Interleukin-2 and Interleukin-2 Antibody Complexes Attenuates Lung Inflammation and Heart Failure Progression. Hypertension. 2016;68(1):114–122. https://doi.org/10.1161/HYPERTENSIONAHA.116.07084.

8. Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly-Y. M. et al. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic T reg Cell Homeostasis. Science. 2013;341(6145):569–573. https://doi.org/ 10.1126/science.1241165.

9. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165(6):1332–1345. https://doi.org/10.1016/j.cell.2016.05.041.

10. Yuan J., Cao A.L., Yu M., Lin Q.-W., Yu X., Zhang J.-H. et al. Th17 cells facilitate the humoral immune response in patients with acute viral myocarditis. J Clin Immunol. 2010;30(2):226–234. https://doi.org/10.1007/s10875- 009-9355-z.

11. Liao Y.H., Xia N., Zhou S.F., Tang T.T., Yan X.X., Lv B.J. et al. Interleukin-17A Contributes to Myocardial Ischemia/Reperfusion Injury by Regulating Cardiomyocyte Apoptosis and Neutrophil Infiltration. J Am Coll Cardiol. 2012;59(4):420–429. https://doi.org/10.1016/j.jacc.2011.10.863.

12. Bartolomaeus H., Balogh A., Yakoub M., Homann S., Markó L., Höges S. et al. Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage. Circulation. 2019;139(11):1407–1421. https://doi. org/10.1161/CIRCULATIONAHA.118.036652.

13. Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.Ш. Кишечная микробиота как эндокринный орган. Ожирение и метаболизм. 2020;17(3):299–306. https://doi.org/10.14341/omet12457. Demidova T.Y., Lobanova K.G., Oynotkinova O.S. Gut microbiota is an endocrine organ. Obesity and Metabolism. 2020;17(3):299–306. (In Russ.) https://doi.org/10.14341/omet12457.

14. Covasa M., Stephens R.W., Toderean R., Cobuz C. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front Endocrinol. 2019;(10):82. https://doi.org/10.3389/fendo.2019.00082.

15. Parada Venegas D., De la Fuente M.K., Landskron G., González M.J., Quera R., Dijkstra G. et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019;(10):277. https://doi.org/10.3389/fimmu.2019.00277.

16. Schiattarella G.G., Sannino A., Toscano E., Giugliano G., Gargiulo G., Franzone A. et al. Gut microbe-generated metabolite trimethylamine-Noxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017;38(39):2948–2956. https://doi.org/ 10.1093/eurheartj/ehx342.

17. Zhou W., Cheng Y., Zhu P., Nasser M.I., Zhang X., Zhao M. Implication of Gut Microbiota in Cardiovascular Diseases. Oxid Med Cell Longev. 2020;2020:5394096. https://doi.org/10.1155/2020/5394096.

18. Chen W., Zhang S., Wu J., Ye T., Wang S., Wang P. et al. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clin Chim Acta. 2020;507:236–241. https://doi.org/10.1016/j.cca.2020.04.037.

19. Sternini C., Anselmi L., Rozengurt E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes. 2008;15(1):73–78. https://doi.org/10.1097/MED.0b013e3282f43a73.

20. Sikalidis A.K., Maykish A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing A Complex Relationship. Biomedicines. 2020;8(1):8. https://doi.org/10.3390/biomedicines8010008.

21. Zhao L., Lou H., Peng Y., Chen S., Zhang Y., Li X. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine. 2019;66(3):526–537. https://doi.org/10.1007/s12020-019-02103-8.

22. Sedighi M., Razavi S., Navab-Moghadam F., Khamseh M.E., Alaei-Shahmiri F., Mehrtash A. et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog. 2017;111:362–369. https://doi.org/10.1016/j.micpath.2017.08.038.

23. Baothman O.A., Zamzami M.A., Taher I., Abubaker J., Abu-Farha M. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 2016;(15):108. https://doi.org/10.1186/s12944-016-0278-4.

24. Cunningham A.L., Stephens J.W., Harris D.A. Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathog. 2021;13(1):50. https://doi. org/10.1186/s13099-021-00446-0.

25. Furet J.P., Kong L.C., Tap J., Poitou C., Basdevant A., Bouillot J.L. et al. Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss: links with metabolic and low-grade inflammation markers Diabetes. 2010;59(12):3049–3057. https://doi.org/10.2337/db10-0253.

26. Pascale A., Marchesi N., Govoni S., Coppola A., Gazzaruso C. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Curr Opin Pharmacol. 2019;(49):1–5. https://doi.org/10.1016/j.coph.2019.03.011.

27. Gu Y., Wang X., Li J., Zhang Y., Zhong H., Liu R. et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun. 2017;8(1):1785. https://doi.org/10.1038/s41467-017-01682-2.

28. Nagatomo Y., Tang W.H.W. Intersections Between Microbiome and Heart Failure: Revisiting the Gut Hypothesis. J Card Fail. 2015;21(12):973–980. https://doi.org/10.1016/j.cardfail.2015.09.017.

29. Cui X., Ye L., Li J., Jin L., Wang W., Li S. et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep. 2018;8(1):635. https://doi.org/10.1038/s41598-017-18756-2.

30. Louis P., Flint H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.x.

31. Burkard T., Pfister O., Rickli H., Follath F., Hack D., Zaker R. et al. Prognostic impact of systemic inflammatory diseases in elderly patients with congestive heart failure. QJM. 2014;107(2):131–138. https://doi.org/10.1093/qjmed/hct205.

32. Kummen M., Mayerhofer C.C.K., Vestad B., Broch K., Awoyemi A., Storm-Larsen C. et al. Gut Microbiota Signature in Heart Failure Defined From Profiling of 2 Independent Cohorts. J Am Coll Cardiol. 2018;71(10):1184–1186. https://doi.org/10.1016/j.jacc.2017.12.057.

33. Kamo T., Akazawa H., Suda W., Saga-Kamo A., Shimizu Y., Yagi H. et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE. 2017;12(3):e0174099. https://doi.org/10.1371/journal.pone.0174099.

34. Tang W.H., Wang Z., Fan Y., Levison B., Hazen J.E., Donahue L.M. et al. Prognostic Value of Elevated Levels of Intestinal Microbe-Generated Metabolite Trimethylamine-N-Oxide in Patients With Heart Failure. J Am Coll Cardiol. 2014;64(18):1908–1914. https://doi.org/10.1016/j.jacc.2014.02.617.

35. Jin B., Ji F., Zuo A., Liu H., Qi L., He Y. et al. Destructive Role of TMAO in T-Tubule and Excitation-Contraction Coupling in the Adult Cardiomyocytes. Int Heart J. 2020;61(2):355–363. https://doi.org/10.1536/ihj.19-372.

36. Jia Q., Li H., Zhou H., Zhang X., Zhang A., Xie Y. et al. Role and Effective Therapeutic Target of Gut Microbiota in Heart Failure. Cardiovasc Ther. 2019;2019:5164298. https://doi.org/10.1155/2019/5164298.

37. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., Dugar B. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. https://doi.org/10.1038/nature09922.

38. Tang W.H., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X. et al. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N Engl J Med. 2013;368(17):1575–1584. https://doi.org/10.1056/NEJMoa1109400.

39. Koren O., Spor A., Felin J., Fåk F., Stombaugh J., Tremaroli V. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4592–4598. https://doi.org/10.1073/pnas.1011383107.

40. Ding L., Chang M., Guo Y., Zhang L., Xue C., Yanagita T. et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018;17(1):286. https://doi.org/10.1186/s12944-018-0939-6.

41. Geng J., Yang C., Wang B., Zhang X., Hu T., Gu Y. et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother. 2018;97:941–947. https://doi.org/10.1016/j.biopha.2017.11.016.

42. Korcz E., Kerényi Z., Varga L. Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food Funct. 2018;9(6):3057–3068. https://doi.org/10.1039/C8FO00118A.

43. Zhao Y., Liu J., Hao W., Zhu H., Liang N., He Z. et al. Structure-Specific Effects of Short-Chain Fatty Acids on Plasma Cholesterol Concentration in Male Syrian Hamsters. J Agric Food Chem. 2017;65(50):10984–10992. https://doi.org/10.1021/acs.jafc.7b04666.

44. Hartley L., May M.D., Loveman E., Colquitt J.L., Rees K. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2016;2016(1):CD011472. https://doi.org/10.1002/14651858.CD011472.pub2.

45. Chen Y., Xu C., Huang R., Song J., Li D., Xia M. Butyrate from pectin fermentation inhibits intestinal cholesterol absorption and attenuates atherosclerosis in apolipoprotein E-deficient mice. J Nutr Biochem. 2018;56:175–182. https://doi.org/10.1016/j.jnutbio.2018.02.011.

46. Gan X.T., Ettinger G., Huang C.X., Burton J.P., Haist J.V., Rajapurohitam V. et al. Probiotic Administration Attenuates Myocardial Hypertrophy and Heart Failure After Myocardial Infarction in the Rat. Circ Heart Fail. 2014;7(3):491–499. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000978.

47. Lam V., Su J., Koprowski S., Hsu A., Tweddell J.S., Rafiee P. et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26(4):1727–1735. https://doi.org/10.1096/fj.11-197921.

48. Costanza A.C., Moscavitch S.D., Faria Neto H.C.C., Mesquita E.T. Probiotic therapy with Saccharomyces boulardii for heart failure patients: A randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol. 2015;179:348–350. https://doi.org/10.1016/j.ijcard.2014.11.034.

49. Cho Y.A., Kim J. Effect of Probiotics on Blood Lipid Concentrations: A Meta-Analysis of Randomized Controlled Trials. Medicine. 2015;94(43):e1714. https://doi.org/10.1097/MD.0000000000001714.

50. Wang L., Guo M.J., Gao Q., Yang J.F., Yang L., Pang X.L. et al. The effects of probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine. 2018;97(5):e9679. https://doi.org/10.1097/MD.0000000000009679.

51. Shimizu M., Hashiguchi M., Shiga T., Tamura H., Mochizuki M. Meta-Analysis: Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals. PLoS ONE. 2015;10(10):e0139795. https://doi.org/10.1371/journal.pone.0139795.

52. Sabico S., Al-Mashharawi A., Al-Daghri N.M., Wani K., Amer O.E., Hussain D.S. et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019;38(4):1561–1569. https://doi.org/10.1016/j.clnu.2018.08.009.

53. Firouzi S., Majid H.A., Ismail A., Kamaruddin N.A., Barakatun-Nisak M.Y. Effect of multi-strain probiotics (multi-strain microbial cell preparation) on glycemic control and other diabetes-related outcomes in people with type 2 diabetes: a randomized controlled trial. Eur J Nutr. 2017;56(4):1535–1550. https://doi.org/10.1007/s00394-016-1199-8.

54. Kobyliak N., Falalyeyeva T., Mykhalchyshyn G., Kyriienko D., Komissarenko I. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes Metab Syndr. 2018;12(5):617–624. https://doi.org/10.1016/j.dsx.2018.04.015.

55. Zhou X., Li J., Guo J., Geng B., Ji W., Zhao Q. et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome. 2018;6(1):66. https://doi.org/10.1186/s40168-018-0441-4.

56. Ponziani F.R., Zocco M.A., D’Aversa F., Pompili M., Gasbarrini A. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation. World J Gastroenterol. 2017;23(25):4491. https://doi.org/10.3748/wjg.v23.i25.4491.

57. Conraads V.M., Jorens P.G., De Clerck L.S., Van Saene H.K., Ieven M.M., Bosmans J.M. et al. Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur J Heart Fail. 2004;6(4):483–491. https://doi.org/10.1016/j.ejheart.2003.12.004.

58. Roberts A.B., Gu X., Buffa J.A., Hurd A.G., Wang Z., Zhu W. et al. Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med. 2018;24(9):1407–1417. https://doi.org/10.1038/s41591-018-0128-1.

59. Wang Z., Roberts A.B., Buffa J.A., Levison B.S., Zhu W., Org E. et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell. 2015;163(7):1585–1595. https://doi.org/10.1016/j.cell.2015.11.055.

60. Pathak P., Helsley R.N., Brown A.L., Buffa J.A., Choucair I., Nemet I. et al. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. Am J Physiol Heart Circ Physiol. 2020;318(6):H1474-H1486. https://doi.org/10.1152/ajpheart.00584.2019.

61. Chen M.L., Yi L., Zhang Y., Zhou X., Ran L., Yang J. et al. Resveratrol Attenuates Trimethylamine- N -Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio. 2016;7(2):e02210-15. https://doi.org/10.1128/mBio.02210-15.

62. Korsten S.G.P.J., Smits E.A.W., Garssen J., Vromans H. Modeling of the luminal butyrate concentration to design an oral formulation capable of achieving a pharmaceutical response. PharmaNutrition. 2019;(10):100166. https://doi.org/10.1016/j.phanu.2019.100166.

63. Демидова Т.Ю., Лобанова К.Г., Короткова Т.Н., Харчилава Л.Д. Абнормальная кишечная микробиота и нарушение инкретинового эффекта как причины развития сахарного диабета 2 типа. Медицинский вестник Юга России. 2022;13(1):24–42. https://doi.org/10.21886/2219-8075-2022-13-1-24-42.

64. Demidova T.Y., Lobanova K.G., Korotkova T.N., Kharchilava L.D. Abnormal gut microbiota and impaired incretin effect as a cause of type 2 diabetes mellitus. Medical Herald of the South of Russia. 2022;13(1):24–42. (In Russ.) https://doi.org/10.21886/2219-8075-2022-13-1-24-42.

65. Olivares M., Neyrinck A.M., Pötgens S.A., Beaumont M., Salazar N., Cani P.D. et al. The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia. 2018;61(8):1838–1848. https://doi.org/10.1007/s00125-018-4647-6.

66. Zhang M., Feng R., Yang M., Qian C., Wang Z., Liu W., Ma J. Effects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Res Care. 2019;7(1):e000717. https://doi.org/10.1136/bmjdrc-2019-000717.


Review

For citations:


Sorokina YA, Petunina NA, Sinyushkina SD, Gorinova AV, Pryazhnikova MI, Sukhanov SA, Rudakov AS, Zanozina OV. Cardiovascular pathology and intestinal microbiome relationship: potential targets of pharmacotherapy. Meditsinskiy sovet = Medical Council. 2023;17(9):137-143. (In Russ.) https://doi.org/10.21518/ms2023-158

Views: 515


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)