Preview

Медицинский Совет

Расширенный поиск

Метаболический синдром: перспективы использования ангиопоэтин-подобных белков 3-го и 4-го типа для диагностики метаболических нарушений

https://doi.org/10.21518/ms2023-303

Аннотация

Метаболический синдром (МС) является одной из основных проблем глобального общественного здравоохранения. Общепризнанными и наиболее важными компонентами МС являются абдоминальный тип ожирения, артериальная гипертензия, нарушения углеводного обмена и дислипидемия. Важным регулятором функций жировой ткани признана ангиопоэтин-подобная система, включающая 8 известных к настоящему времени типов ангиопоэтин-подобных белков. Наиболее изученными с точки зрения влияния на сердечно-сосудистые риски и представляющими интерес в плане функционирования при состояниях, сопряженных с клиникой МС, являются ангиопоэтин-подобные белки 3-го и 4-го типа. В настоящем обзоре основное внимание уделено рассмотрению вклада ангиопоэтин-подобных белков 3-го и 4-го типа в развитие каждого состояния из «созвездия аномалий», характеризующих МС. На основании проведенного анализа современных данных в информационной базе PubMed продемонстрирована ключевая роль данных гепатокинов в качестве модуляторов взаимодействия между печенью и жировой тканью. Детально рассмотрено их участие в гомеостазе липидов, глюкозы, сахарного диабета 2-го типа, гипертензии, неалкогольной жировой болезни печени и апноэ во сне, т. е. в максимальном спектре состояний, определяющих МС. Показано, что ангиопоэтин-подобные белки 3-го и 4-го типа могут действовать как независимые предикторы МС, демонстрируя потенциальную роль в качестве прогностических биомаркеров метаболических нарушений. Понимание особенностей функционирования белков ангиопоэтин-подобной системы может предложить новые как диагностические, так и терапевтические подходы к заболеваниям, сопровождающимся нарушением обмена веществ. Пристальное нацеливание на ангиопоэтин-подобные белки 3-го и 4-го типа и разработка инновационных терапевтических методов с участием блокаторов их действия способны в ближайшей перспективе оказать существенное влияние на эффективность лечения метаболических нарушений у людей.

Об авторе

В. А. Александров
Волгоградский государственный медицинский университет; Научно-исследовательский институт клинической и экспериментальной ревматологии имени А.Б. Зборовского
Россия

Александров Владислав Андреевич ассистент кафедры госпитальной терапии, ВГМУ; младший научный сотрудник, НИИ клинической и экспериментальной ревматологии имени А.Б. Зборовского;

400131, Волгоград, площадь Павших Борцов, д. 1; 400138, Волгоград, ул. им. Землячки, д. 76



Список литературы

1. Saklayen MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018;20(2):12. https://doi.org/10.1007/s11906-018-0812-z.

2. Mendrick DL, Diehl AM, Topor LS, Dietert RR, Will Y, La Merrill MA et al. Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol Sci. 2018;162(1):36–42. https://doi.org/10.1093/toxsci/kfx233.

3. Алексеева НС. Влияние компонентов метаболического синдрома на качество жизни пациентов. Acta Biomedica Scientifica. 2014;(6):9–13. Режим доступа: https://www.actabiomedica.ru/jour/article/view/1826.

4. Кытикова ОЮ, Антонюк МВ, Кантур ТА, Новгородцева ТП, Денисенко ЮК. Распространенность и биомаркеры метаболического синдрома. Ожирение и метаболизм. 2021;18(3):302–312. https://doi.org/10.14341/omet12704.

5. Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Zhen EY et al. Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J Lipid Res. 2020;61(8):1203–1220. https://doi.org/10.1194/jlr.RA120000781.

6. Wang Y, McNutt MC, Banfi S, Levin MG, Holland WL, Gusarova V et al. Hepatic ANGPTL3 regulates adipose tissue energy homeostasis. Proc Natl Acad Sci U S A. 2015;112(37):11630–11635. https://doi.org/10.1073/pnas.1515374112.

7. Dijk W, Heine M, Vergnes L, Boon MR, Schaart G, Hesselink MK et al. ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. Elife. 2015;4:e08428. https://doi.org/10.7554/eLife.08428.

8. Bini S, D’Erasmo L, Di Costanzo A, Minicocci I, Pecce V, Arca M. The Interplay between Angiopoietin-Like Proteins and Adipose Tissue: Another Piece of the Relationship between Adiposopathy and Cardiometabolic Diseases? Int J Mol Sci. 2021;22(2):742. https://doi.org/10.3390/ijms22020742.

9. Fazio S, Minnier J, Shapiro MD, Tsimikas S, Tarugi P, Averna MR et al. Threshold Effects of Circulating Angiopoietin-Like 3 Levels on Plasma Lipoproteins. J Clin Endocrinol Metab. 2017;102(9):3340–3348. https://doi.org/10.1210/jc.2016-4043.

10. Mattijssen F, Kersten S. Regulation of triglyceride metabolism by Angiopoietin-like proteins. Biochim Biophys Acta. 2012;1821(5):782–789. https://doi.org/10.1016/j.bbalip.2011.10.010.

11. Yin W, Romeo S, Chang S, Grishin NV, Hobbs HH, Cohen JC. Genetic variation in ANGPTL4 provides insights into protein processing and function. J Biol Chem. 2009;284(19):13213–13222. https://doi.org/10.1074/jbc.M900553200.

12. Oteng AB, Ruppert PMM, Boutens L, Dijk W, van Dierendonck XAMH, Olivecrona G et al. Characterization of ANGPTL4 function in macrophages and adipocytes using Angptl4-knockout and Angptl4-hypomorphic mice. J Lipid Res. 2019;60(10):1741–1754. https://doi.org/10.1194/jlr.M094128.

13. Iqbal J, Al Qarni A, Hawwari A, Alghanem AF, Ahmed G. Metabolic Syndrome, Dyslipidemia and Regulation of Lipoprotein Metabolism. Curr Diabetes Rev. 2018;14(5):427–433. https://doi.org/10.2174/1573399813666170705161039.

14. Allan CM, Larsson M, Jung RS, Ploug M, Bensadoun A, Beigneux AP et al. Mobility of “HSPG-bound” LPL explains how LPL is able to reach GPIHBP1 on capillaries. J Lipid Res. 2017;58(1):216–225. https://doi.org/10.1194/jlr.M072520.

15. Beigneux AP, Allan CM, Sandoval NP, Cho GW, Heizer PJ, Jung RS et al. Lipoprotein lipase is active as a monomer. Proc Natl Acad Sci U S A. 2019;116(13):6319–6328. https://doi.org/10.1073/pnas.1900983116.

16. Kristensen KK, Midtgaard SR, Mysling S, Kovrov O, Hansen LB, Skar-Gislinge N et al. A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proc Natl Acad Sci U S A. 2018;115(26):E6020–E6029. https://doi.org/10.1073/pnas.1806774115.

17. Li Y, He PP, Zhang DW, Zheng XL, Cayabyab FS, Yin WD, Tang CK. Lipoprotein lipase: from gene to atherosclerosis. Atherosclerosis. 2014;237(2):597–608. https://doi.org/10.1016/j.atherosclerosis.2014.10.016.

18. Sato K, Okajima F, Miyashita K, Imamura S, Kobayashi J, Stanhope KL et al. The majority of lipoprotein lipase in plasma is bound to remnant lipoproteins: A new definition of remnant lipoproteins. Clin Chim Acta. 2016;461:114–125. https://doi.org/10.1016/j.cca.2016.06.020.

19. Aryal B, Singh AK, Zhang X, Varela L, Rotllan N, Goedeke L et al. Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis. JCI Insight. 2018;3(6):e97918. https://doi.org/10.1172/jci.insight.97918.

20. Hassan M. ANGPLT3: A novel modulator of lipid metabolism. Glob Cardiol Sci Pract. 2017;(1):e201706. https://doi.org/10.21542/gcsp.2017.6.

21. Morelli MB, Chavez C, Santulli G. Angiopoietin-like proteins as therapeutic targets for cardiovascular disease: focus on lipid disorders. Expert Opin Ther Targets. 2020;24(1):79–88. https://doi.org/10.1080/14728222.2020.1707806.

22. Wang Y, Gusarova V, Banfi S, Gromada J, Cohen JC, Hobbs HH. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J Lipid Res. 2015;56(7):1296–1307. https://doi.org/10.1194/jlr.M054882.

23. Zhu WF, Wang CL, Liang L, Shen Z, Fu JF, Liu PN et al. Triglyceride-raising APOA5 genetic variants are associated with obesity and non-HDL-C in Chinese children and adolescents. Lipids Health Dis. 2014;13:93. https://doi.org/10.1186/1476-511X-13-93.

24. Tikka A, Jauhiainen M. The role of ANGPTL3 in controlling lipoprotein metabolism. Endocrine. 2016;52(2):187–193. https://doi.org/10.1007/s12020-015-0838-9.

25. Lian SH, Hsu BG, Wang JH, Chen MC. Positive correlation of serum angiopoietin-like protein 3 levels with metabolic syndrome in patients with coronary artery disease. Tzu Chi Med J. 2021;34(1):75–81. https://doi.org/10.4103/tcmj.tcmj_49_21.

26. Lang W, Frishman WH. Angiopoietin-Like 3 Protein Inhibition: A New Frontier in Lipid-Lowering Treatment. Cardiol Rev. 2019;27(4):211–217. https://doi.org/10.1097/CRD.0000000000000258.

27. Kovrov O, Kristensen KK, Larsson E, Ploug M, Olivecrona G. On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity. J Lipid Res. 2019;60(4):783–793. https://doi.org/10.1194/jlr.M088807.

28. Dewey FE, Gusarova V, O’Dushlaine C, Gottesman O, Trejos J, Hunt C et al. Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease. N Engl J Med. 2016;374(12):1123–1133. https://doi.org/10.1056/NEJMoa1510926.

29. Chi X, Britt EC, Shows HW, Hjelmaas AJ, Shetty SK, Cushing EM et al. ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol Metab. 2017;6(10):1137–1149. https://doi.org/10.1016/j.molmet.2017.06.014.

30. Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest. 2017;127(1):74–82. https://doi.org/10.1172/JCI88883.

31. Dijk W, Kersten S. Regulation of lipid metabolism by angiopoietin-like proteins. Curr Opin Lipidol. 2016;27(3):249–256. https://doi.org/10.1097/MOL.0000000000000290.

32. Tikkanen E, Minicocci I, Hällfors J, Di Costanzo A, D’Erasmo L, Poggiogalle E et al. Metabolomic Signature of Angiopoietin-Like Protein 3 Deficiency in Fasting and Postprandial State. Arterioscler Thromb Vasc Biol. 2019;39(4):665–674. https://doi.org/10.1161/ATVBAHA.118.312021.

33. Schinzari F, Vizioli G, Campia U, Tesauro M, Cardillo C. Variable Changes of Circulating ANGPTL3 and ANGPTL4 in Different Obese Phenotypes: Relationship with Vasodilator Dysfunction. Biomedicines. 2021;9(8):1037. https://doi.org/10.3390/biomedicines9081037.

34. Abu-Farha M, Al-Khairi I, Cherian P, Chandy B, Sriraman D, Alhubail A et al. Increased ANGPTL3, 4 and ANGPTL8/betatrophin expression levels in obesity and T2D. Lipids Health Dis. 2016;15(1):181. https://doi.org/10.1186/s12944-016-0337-x.

35. Cinkajzlová A, Mráz M, Lacinová Z, Kloučková J, Kaválková P, Kratochvílová H et al. Angiopoietin-like protein 3 and 4 in obesity, type 2 diabetes mellitus, and malnutrition: the effect of weight reduction and realimentation. Nutr Diabetes. 2018;8(1):21. https://doi.org/10.1038/s41387-018-0032-2.

36. Sadeghabadi ZA, Nourbakhsh M, Alaee M, Nourbakhsh M, Ghorbanhosseini SS, Sharifi R, Razzaghy-Azar M. Angiopoietin-Like Proteins 2 and 3 in Children and Adolescents with Obesity and Their Relationship with Hypertension and Metabolic Syndrome. Int J Hypertens. 2021:6748515. https://doi.org/10.1155/2021/6748515.

37. Sadeghabadi ZA, Nourbakhsh M, Alaee M, Larijani B, Razzaghy-Azar M. Peroxisome proliferator-activated receptor gamma expression in peripheral blood mononuclear cells and angiopoietin-like protein 4 levels in obese children and adolescents. J Endocrinol Invest. 2018;41(2):241–247. https://doi.org/10.1007/s40618-017-0730-y.

38. Parhofer KG. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia. Diabetes Metab J. 2015;39(5):353–362. https://doi.org/10.4093/dmj.2015.39.5.353.

39. Robciuc MR, Maranghi M, Lahikainen A, Rader D, Bensadoun A, Öörni K et al. Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids. Arterioscler Thromb Vasc Biol. 2013;33(7):1706–1713. https://doi.org/10.1161/ATVBAHA.113.301397.

40. Robciuc MR, Tahvanainen E, Jauhiainen M, Ehnholm C. Quantitation of serum angiopoietin-like proteins 3 and 4 in a Finnish population sample. J Lipid Res. 2010;51(4):824–831. https://doi.org/10.1194/jlr.M002618.

41. Nidhina Haridas PA, Soronen J, Sädevirta S, Mysore R, Quagliarini F, Pasternack A et al. Regulation of Angiopoietin-Like Proteins (ANGPTLs) 3 and 8 by Insulin. J Clin Endocrinol Metab. 2015;100(10):E1299–1307. https://doi.org/10.1210/jc.2015-1254.

42. Harada M, Yamakawa T, Kashiwagi R, Ohira A, Sugiyama M, Sugiura Y et al. Association between ANGPTL3, 4, and 8 and lipid and glucose metabolism markers in patients with diabetes. PLoS ONE. 2021;16(7):e0255147. https://doi.org/10.1371/journal.pone.0255147.

43. Zhao D, Yang LY, Wang XH, Yuan SS, Yu CG, Wang ZW et al. Different relationship between ANGPTL3 and HDL components in female non-diabetic subjects and type-2 diabetic patients. Cardiovasc Diabetol. 2016;15(1):132. https://doi.org/10.1186/s12933-016-0450-1.

44. Hoang Thi M, Dang Thanh C, Huynh Quang T. The Correlation Between Angiopoietin-Like 3 and Metabolic Markers of Some Lipid and Glucose in Type 2 Diabetes Mellitus Patients at the First Diagnosis. Diabetes Metab Syndr Obes. 2022;15:3329–3337. https://doi.org/10.2147/DMSO.S383234.

45. Chen MC, Hsu BG, Lee CJ, Yang CF, Wang JH. High serum adipocyte fatty acid binding protein level as a potential biomarker of aortic arterial stiffness in hypertensive patients with metabolic syndrome. Clin Chim Acta. 2017;473:166–172. https://doi.org/10.1016/j.cca.2017.08.030.

46. Janssen AWF, Katiraei S, Bartosinska B, Eberhard D, Willems van Dijk K, Kersten S. Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota. Diabetologia. 2018;61(6):1447–1458. https://doi.org/10.1007/s00125-018-4583-5.

47. Barja-Fernandez S, Moreno-Navarrete JM, Folgueira C, Xifra G, Sabater M, Castelao C et al. Plasma ANGPTL-4 is Associated with Obesity and Glucose Tolerance: Cross-Sectional and Longitudinal Findings. Mol Nutr Food Res. 2018;62(10):e1800060. https://doi.org/10.1002/mnfr.201800060.

48. Tjeerdema N, Georgiadi A, Jonker JT, van Glabbeek M, Alizadeh Dehnavi R, Tamsma JT et al. Inflammation increases plasma angiopoietin-like protein 4 in patients with the metabolic syndrome and type 2 diabetes. BMJ Open Diabetes Res Care. 2014;2(1):e000034. https://doi.org/10.1136/bmjdrc-2014-000034.

49. Barchetta I, Chiappetta C, Ceccarelli V, Cimini FA, Bertoccini L, Gaggini M et al. Angiopoietin-Like Protein 4 Overexpression in Visceral Adipose Tissue from Obese Subjects with Impaired Glucose Metabolism and Relationship with Lipoprotein Lipase. Int J Mol Sci. 2020;21(19):7197. https://doi.org/10.3390/ijms21197197.

50. Chen MC, Hsu BG, Lee CJ, Wang JH. High-Serum Angiopoietin-Like Protein 3 Levels Associated with Cardiovascular Outcome in Patients with Coronary Artery Disease. Int J Hypertens. 2020:2980954. https://doi.org/10.1155/2020/2980954.

51. Hussain A, Sun C, Selvin E, Nambi V, Coresh J, Jia X et al. Triglyceride-rich lipoproteins, apolipoprotein C-III, angiopoietin-like protein 3, and cardiovascular events in older adults: Atherosclerosis Risk in Communities (ARIC) study. Eur J Prev Cardiol. 2022;29(2):e53–e64. https://doi.org/10.1093/eurjpc/zwaa152.

52. Abu-Farha M, Cherian P, Qaddoumi MG, AlKhairi I, Sriraman D, Alanbaei M, Abubaker J. Increased plasma and adipose tissue levels of ANGPTL8/ Betatrophin and ANGPTL4 in people with hypertension. Lipids Health Dis. 2018;17(1):35. https://doi.org/10.1186/s12944-018-0681-0.

53. Xu F, Shen L, Yang Y, Kong L, Zu W, Tian D et al. Association Between Plasma Levels of ANGPTL3, 4, 8 and the Most Common Additional Cardiovascular Risk Factors in Patients with Hypertension. Diabetes Metab Syndr Obes. 2023;16:1647–1655. https://doi.org/10.2147/DMSO.S411483.

54. Fortini F, Vieceli Dalla Sega F, Marracino L, Severi P, Rapezzi C, Rizzo P, Ferrari R. Well-Known and Novel Players in Endothelial Dysfunction: Updates on a Notch(ed) Landscape. Biomedicines. 2021;9(8):997. https://doi.org/10.3390/biomedicines9080997.

55. Ali F, Khan A, Muhammad SA, Hassan SSU. Quantitative Real-Time Analysis of Differentially Expressed Genes in Peripheral Blood Samples of Hypertension Patients. Genes (Basel). 2022;13(2):187. https://doi.org/10.3390/genes13020187.

56. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73(1):202–209. https://doi.org/10.1016/j.jhep.2020.03.039.

57. Eslam M, Sanyal AJ, George J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158(7):1999–2014.e1. https://doi.org/10.1053/j.gastro.2019.11.312.

58. Ke Y, Liu S, Zhang Z, Hu J. Circulating angiopoietin-like proteins in metabolicassociated fatty liver disease: a systematic review and meta-analysis. Lipids Health Dis. 2021;20(1):55. https://doi.org/10.1186/s12944-021-01481-1.

59. Barchetta I, Cimini FA, Chiappetta C, Bertoccini L, Ceccarelli V, Capoccia D et al. Relationship between hepatic and systemic angiopoietin-like 3, hepatic Vitamin D receptor expression and NAFLD in obesity. Liver Int. 2020;40(9):2139–2147. https://doi.org/10.1111/liv.14554.

60. Hu X, Fan J, Ma Q, Han L, Cao Z, Xu C et al. A novel nanobody-heavy chain antibody against Angiopoietin-like protein 3 reduces plasma lipids and relieves nonalcoholic fatty liver disease. J Nanobiotechnology. 2022;20(1):237. https://doi.org/10.1186/s12951-022-01456-z.

61. Al-Terki A, Abu-Farha M, AlKhairi I, Cherian PT, Sriraman D, Shyamsundar A et al. Increased Level of Angiopoietin Like Proteins 4 and 8 in People With Sleep Apnea. Front Endocrinol (Lausanne). 2018;9:651. https://doi.org/10.3389/fendo.2018.00651.

62. Li J, Yang Y, Jiao X, Yu H, Du Y, Zhang M et al. The Clinical Role of AngiopoietinLike Protein 3 in Evaluating Coronary Artery Disease in Patients with Obstructive Sleep Apnea. Cardiovasc Drugs Ther. 2020;34(6):773–780. https://doi.org/10.1007/s10557-020-06991-1.

63. Lv Q, Jiao X, Yu H, Sun Q, Li F, Wang Y et al. ANGPTL3 and Cardiovascular Outcomes in Patients With Acute Coronary Syndrome and Obstructive Sleep Apnea. J Am Heart Assoc. 2022;11(18):e025955. https://doi.org/10.1161/JAHA.122.025955.

64. Aryal B, Price NL, Suarez Y, Fernández-Hernando C. ANGPTL4 in Metabolic and Cardiovascular Disease. Trends Mol Med. 2019;25(8):723–734. https://doi.org/10.1016/j.molmed.2019.05.010.

65. Pérez-Martínez P, Mikhailidis DP, Athyros VG, Bullo M, Couture P, Covas MI et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev. 2017;75(5):307–326. https://doi.org/10.1093/nutrit/nux014.


Рецензия

Для цитирования:


Александров ВА. Метаболический синдром: перспективы использования ангиопоэтин-подобных белков 3-го и 4-го типа для диагностики метаболических нарушений. Медицинский Совет. 2023;(16):68-75. https://doi.org/10.21518/ms2023-303

For citation:


Aleksandrov VA. Metabolic syndrome: prospects for the use of angiopoetin-like proteins type 3 and 4 for the diagnosis of metabolic disorders. Meditsinskiy sovet = Medical Council. 2023;(16):68-75. (In Russ.) https://doi.org/10.21518/ms2023-303

Просмотров: 314


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)