Preview

Meditsinskiy sovet = Medical Council

Advanced search

Features of the fatty acid profile of erythrocyte membranes in patients with fatty liver disease of alcoholic genesis

https://doi.org/10.21518/ms2023-391

Abstract

Introduction.  Alcoholic steatosis, which is a reversible  condition, is currently considered a significant  risk factor for the  progression  of diffuse liver pathology, therefore understanding of its mechanisms at the molecular  level is essential.

Aim. To study the features  of the fatty acid profile of erythrocyte  membranes in patients with fatty liver disease  of alcoholic origin for possible  use of fatty acids (FAs) as biomarkers  and potential therapeutic targets.

Materials and methods. A total of 31 men with alcoholic fatty liver disease  (AFLD) (average age of 45.1 ± 17.1 years) and 28 men of comparable age without AFLD and symptomatic  pathology of internal  organs were examined. The FA composition  and levels of erythrocyte  membranes (ER) were studied  using Agilent 7000B (USA) triple quadrupole gas chromatography/mass spectrometry.

Results and discussion.  A  higher  level  of a  range  of saturated FAs (lauric, margaric,  pentadecane), monounsaturated  FAs (MUFAs), which are additional factors for the progression of AFLD (palmitoleic, total monounsaturated acids), n-6/n-3  polyun-saturated FAs  ratio (PUFAs), alpha-linolenic FA was detected in patients with AFL vs the  control  group (p = 0.00002–0.05). In contrast,  the  levels  of arachidic  and docosahexaenoic acids, total  eicosapentaenoic and docosahexaenoic n-3 PUFAs, and total  n-3 PUFAs were lower in patients with AFLD than  in healthy  men (p = 0.003–0.01), which is associated with increased ethanol induced  adipose  tissue  lipolysis  via PDE3B-AMPK axis. The use  of FAs panel  (C16:1;9, sum  MUFA, n-6/n-3  PUFA, C22:6n3, C20:0) to distinguish  patients with AFLD from healthy  ones  ensured  high levels  of sensitivity (79%), and specificity (81%) (AUC 0.808). Multidirectional  associations of FA levels  in erythrocyte  membranes with each  other  and liver tests  and lipid profile results  were revealed.

Conclusion. Thus, the features  of erythrocytes  membrane FAs in patients with AFLD and the potential to use them as biomarkers for differentiation of people  with AFLD from healthy individuals have been  identified.

About the Authors

M. V. Kruchinina
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Medical University
Russian Federation

Margarita V. Kruchinina - Dr. Sci. (Med.), Associate Professor, Leading Researcher,  Head of the  Laboratory of Gastroenterology, Institute  of Cytology and Genetics, Siberian  Branch of the  Russian Academy of Sciences;  Professor of the  Department of Propaedeutics of Internal  Diseases, Novosibirsk State  Medical University.

175/1, Boris Bogatkov St., Novosibirsk, 630089; 52, Krasny Ave., Novosibirsk, 630091



M. V. Parulikova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Marina V. Parulikova - Senior Lecturer of the Department of Education, gastroenterologist, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences.

175/1, Boris Bogatkov St., Novosibirsk, 630089



A. V. Belkovets
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Medical University
Russian Federation

Anna V. Belkovets - Dr. Sci. (Med.), Associate Professor, Senior Researcher  at the  Laboratory of Gastroenterology, Head of the  Clinic, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Professor of the  Department of Propaedeutics of Internal  Diseases, Novosibirsk State  Medical University.

175/1, Boris Bogatkov St., Novosibirsk, 630089; 52, Krasny Ave., Novosibirsk, 630091



K. Yu. Nikolaev
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Konstantin Yu. Nikolaev - Dr. Sci. (Med.), Professor, Chief Researcher,  Head of the  Laboratory of Emergency Therapy, Institute  of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences.

175/1, Boris Bogatkov St., Novosibirsk, 630089



A. K. Ovsyannikova
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Alla K. Ovsyannikova - Dr. Sci. (Med.), Associate Professor, Senior Researcher  at the Laboratories  of Clinical, Population and Preventive  Studies of Therapeutic  and Endocrine Diseases, Institute  of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences.

175/1, Boris Bogatkov St., Novosibirsk, 630089



References

1. Bardach AE, Alcaraz AO, Ciapponi A, Garay OU, Riviere AP, Palacios A et al. Alcohol consumption’s attributable disease burden and cost-effectiveness of targeted public health interventions: a systematic review of mathematical models. BMC Public Health. 2019;19(1):1378. https://doi.org/10.1186/s12889-019-7771-4.

2. Kong LZ, Chandimali N, Han YH, Lee DH, Kim JS, Kim SU et al. Pathogenesis, Early Diagnosis, and Therapeutic Management of Alcoholic Liver Disease. Int J Mol Sci. 2019;20(11):2712. https://doi.org/10.3390/ijms20112712.

3. Kang X, Zhong W, Liu J, Song Z, McClain CJ, Kang YJ, Zhou Z. Zinc supplementation reverses alcohol-induced steatosis in mice through reactivating hepatocyte nuclear factor-4alpha and peroxisome proliferator-activated receptor-alpha. Hepatology. 2009;50(4):1241–1250. https://doi.org/10.1002/hep.23090.

4. Berk PD, Zhou S, Bradbury MW. Increased hepatocellular uptake of long chain fatty acids occurs by different mechanisms in fatty livers due to obesity or excess ethanol use, contributing to development of steatohepatitis in both settings. Trans Am Clin Climatol Assoc. 2005;116:335–345. Available at: https://pubmed.ncbi.nlm.nih.gov/16555625/.

5. Jia Y. The Roles of Epigenetic Regulators and Inflammasome in Hepatocellular Carcinoma Tumorigenesis in Patients with Alcoholic Steatohepatitis (ASH) vs Non-Alcoholic Steatohepatitis (NASH). Clin Oncol Res. 2019;2(3)2–7. https://doi.org/10.31487/j.COR.2019.03.04.

6. Hajifathalian K, Torabi Sagvand B, McCullough AJ. Effect of Alcohol Consumption on Survival in Nonalcoholic Fatty Liver Disease: A National Prospective Cohort Study. Hepatology. 2019;70(2):511–521. https://doi.org/10.1002/hep.30226.

7. Rasineni K, Casey CA. Molecular mechanism of alcoholic fatty liver. Indian J Pharmacol. 2012;44(3):299–303. https://doi.org/10.4103/0253-7613.96297.

8. Dobrowolski P, Prejbisz A, Kuryłowicz A, Baska A, Burchardt P, Chlebus K et al. Metabolic syndrome – a new definition and management guidelines: A joint position paper by the Polish Society of Hypertension, Polish Society for the Treatment of Obesity, Polish Lipid Association, Polish Association for Study of Liver, Polish Society of Family Medicine, Polish Society of Lifestyle Medicine, Division of Prevention and Epidemiology Polish Cardiac Society, “Club 30” Polish Cardiac Society, and Division of Metabolic and Bariatric Surgery Society of Polish Surgeons. Arch Med Sci. 2022;18(5):1133–1156. https://doi.org/10.5114/aoms/152921.

9. Arab L, Akbar J. Biomarkers and the measurement of fatty acids. Public Health Nutr. 2002;5(6A):865-871. https://doi.org/10.1079/phn2002391.

10. Dietrich CF, Bamber J, Berzigotti A, Bota S, Cantisani V, Castera L et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). EFSUMB-Leitlinien und Empfehlungen zur klinischen Anwendung der Leberelastographie, Update 2017 (Langversion). Ultraschall Med. 2017;38(4):e16–e47. https://doi.org/10.1055/s-0043-103952.

11. Kruchinina MV, Kruchinin VN, Prudnikova YI, Gromov AA, Shashkov MV, Sokolova AS. Study of the level of fatty acids in erythrocyte membranes and serum of patients with colorectal cancer in novosibirsk. Uspehi Molekularnoj Onkologii. 2018;5(2):50–61. (In Russ.) https://doi.org/10.17650/2313-805X-2018-5-2-50-61.

12. Breiman L. Random Forests. Machine Learning. 2001;45:5–32. https://doi.org/10.1023/A:1010933404324.

13. Leoni S, Tovoli F, Napoli L, Serio I, Ferri S, Bolondi L. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World J Gastroenterol. 2018;24(30):3361–3373. https://doi.org/10.3748/wjg.v24.i30.3361.

14. Подымова СД. Болезни печени. Изд. 5-е, перераб. и доп. М.: МИА; 2018. 984 с.

15. Sozio M, Crabb DW. Alcohol and lipid metabolism. Am J Physiol Endocrinol Metab. 2008;295(1):E10–E16. https://doi.org/10.1152/ajpendo.00011.2008.

16. French SW. Ethanol and hepatocellular injury. Clin Lab Med. 1996;16(2): 289–306. Available at: https://pubmed.ncbi.nlm.nih.gov/8792073.

17. Zhou Z, Wang L, Song Z, Lambert JC, McClain CJ, Kang YJ. A critical involvement of oxidative stress in acute alcohol-induced hepatic TNF-alpha production. Am J Pathol. 2003;163(3):1137–1146. https://doi.org/10.1016/s0002-9440(10)63473-6.

18. Katan MB, van Birgelen A, Deslypere JP, Penders M, van Staveren WA. Biological markers of dietary intake, with emphasis on fatty acids. Ann Nutr Metab. 1991;35(5):249–252. https://doi.org/10.1159/000177653.

19. Lee JJ, Lambert JE, Hovhannisyan Y, Ramos-Roman MA, Trombold JR, Wagner DA, Parks EJ. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am J Clin Nutr. 2015;101(1):34-43. https://doi.org/10.3945/ajcn.114.092262.

20. Guo R, Chen L, Zhu J, Li J, Ding Q, Chang K et al. Monounsaturated fatty acid-enriched olive oil exacerbates chronic alcohol-induced hepatic steatosis and liver injury in C57BL/6J mice. Food Funct. 2023;14(3):1573–1583. https://doi.org/10.1039/d2fo03323b.

21. Ronis MJ, Korourian S, Zipperman M, Hakkak R, Badger TM. Dietary saturated fat reduces alcoholic hepatotoxicity in rats by altering fatty acid metabolism and membrane composition. J Nutr. 2004;134(4):904–912. https://doi.org/10.1093/jn/134.4.904.

22. Chen P, Torralba M, Tan J, Embree M, Zengler K, Stärkel P et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology. 2015;148(1):203–214.e16. https://doi.org/10.1053/j.gastro.2014.09.014.

23. Saraswathi V, Kumar N, Gopal T, Bhatt S, Ai W, Ma C et al. Lauric Acid versus Palmitic Acid: Effects on Adipose Tissue Inflammation, Insulin Resistance, and Non-Alcoholic Fatty Liver Disease in Obesity. Biology (Basel). 2020;9(11):346. https://doi.org/10.3390/biology9110346.

24. Yoo W, Gjuka D, Stevenson HL, Song X, Shen H, Yoo SY et al. Fatty acids in non-alcoholic steatohepatitis: Focus on pentadecanoic acid. PLoS ONE. 2017;12(12):e0189965. https://doi.org/10.1371/journal.pone.0189965.

25. Jenkins B, West JA, Koulman A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic Acid (c15:0) and heptadecanoic Acid (c17:0) in health and disease. Molecules. 2015;20(2):2425–2444. https://doi.org/10.3390/molecules20022425.

26. Khaw KT, Friesen MD, Riboli E, Luben R, Wareham N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: the EPIC-Norfolk prospective study. PLoS Med. 2012;9(7):e1001255. https://doi.org/10.1371/journal.pmed.1001255.

27. Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kröger J, Schulze MB et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014;2(10):810–818. https://doi.org/10.1016/S2213-8587(14)70146-9.

28. Shapiro H, Tehilla M, Attal-Singer J, Bruck R, Luzzatti R, Singer P. The therapeutic potential of long-chain omega-3 fatty acids in nonalcoholic fatty liver disease. Clin Nutr. 2011;30(1):6–19. https://doi.org/10.1016/j.clnu.2010.06.001.

29. Lakshman MR. Some novel insights into the pathogenesis of alcoholic steatosis. Alcohol. 2004;34(1):45–48. https://doi.org/10.1016/j.alcohol.2004.08.004.

30. Huang LL, Wan JB, Wang B, He CW, Ma H, Li TW, Kang JX. Suppression of acute ethanol-induced hepatic steatosis by docosahexaenoic acid is associated with downregulation of stearoyl-CoA desaturase 1 and inflammatory cytokines. Prostaglandins Leukot Essent Fatty Acids. 2013;88(5):347–353. https://doi.org/10.1016/j.plefa.2013.02.002.

31. Kirpich IA, Miller ME, Cave MC, Joshi-Barve S, McClain CJ. Alcoholic Liver Disease: Update on the Role of Dietary Fat. Biomolecules. 2016;6(1):1. https://doi.org/10.3390/biom6010001.

32. Song BJ, Moon KH, Olsson NU, Salem N Jr. Prevention of alcoholic fatty liver and mitochondrial dysfunction in the rat by long-chain polyunsaturated fatty acids. J Hepatol. 2008;49(2):262–273. https://doi.org/10.1016/j.jhep.2008.04.023.

33. Wada S, Yamazaki T, Kawano Y, Miura S, Ezaki O. Fish oil fed prior to ethanol administration prevents acute ethanol-induced fatty liver in mice. J Hepatol. 2008;49(3):441–450. https://doi.org/10.1016/j.jhep.2008.04.026.

34. Sekiya M, Yahagi N, Matsuzaka T, Najima Y, Nakakuki M, Nagai R et al. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology. 2003;38(6):1529–1539. https://doi.org/10.1016/j.hep.2003.09.028.

35. Sachan DS, Yatim AM, Daily JW. Comparative effects of dietary corn oil, safflower oil, fish oil and palm oil on metabolism of ethanol and carnitine in the rat. J Am Coll Nutr. 2002;21(3):233–238. https://doi.org/10.1080/07315724.2002.10719215.

36. Nanji AA, Zhao S, Sadrzadeh SM, Dannenberg AJ, Tahan SR, Waxman DJ. Markedly enhanced cytochrome P450 2E1 induction and lipid peroxidation is associated with severe liver injury in fish oil-ethanol-fed rats. Alcohol Clin Exp Res. 1994;18(5):1280–1285. https://doi.org/10.1111/j.1530-0277.1994.tb00119.x.

37. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice. Sci Rep. 2016;6:26826. https://doi.org/10.1038/srep26826.

38. Taylor CG, Noto AD, Stringer DM, Froese S, Malcolmson L. Dietary milled flaxseed and flaxseed oil improve N-3 fatty acid status and do not affect glycemic control in individuals with well-controlled type 2 diabetes. J Am Coll Nutr. 2010;29(1):72–80. https://doi.org/10.1080/07315724.2010.10719819.

39. Warner DR, Liu H, Miller ME, Ramsden CE, Gao B, Feldstein AE et al. Dietary Linoleic Acid and Its Oxidized Metabolites Exacerbate Liver Injury Caused by Ethanol via Induction of Hepatic Proinflammatory Response in Mice. Am J Pathol. 2017;187(10):2232–2245. https://doi.org/10.1016/j.ajpath.2017.06.008.

40. Zhang W, Zhong W, Sun Q, Sun X, Zhou Z. Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice. Sci Rep. 2017;7(1):8976. https://doi.org/10.1038/s41598-017-02759-0.

41. Bradbury MW. Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am J Physiol Gastrointest Liver Physiol. 2006;290(2):G194–G198. https://doi.org/10.1152/ajpgi.00413.2005.

42. Huang W, Wang B, Li X, Kang JX. Endogenously elevated n-3 polyunsaturated fatty acids alleviate acute ethanol-induced liver steatosis. Biofactors. 2015;41(6):453–462. https://doi.org/10.1002/biof.1246.

43. Wang M, Zhang X, Ma LJ, Feng RB, Yan C, Su H et al. Omega-3 polyunsaturated fatty acids ameliorate ethanol-induced adipose hyperlipolysis: A mechanism for hepatoprotective effect against alcoholic liver disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863(12):3190–3201. https://doi.org/10.1016/j.bbadis.2017.08.026.

44. Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv Nutr. 2015;6(5):513–540. https://doi.org/10.3945/an.114.007732.

45. Gao B, Lang S, Duan Y, Wang Y, Shawcross DL, Louvet A et al. Serum and Fecal Oxylipins in Patients with Alcohol-Related Liver Disease. Dig Dis Sci. 2019;64(7):1878–1892. https://doi.org/10.1007/s10620-019-05638-y.

46. Raszeja-Wyszomirska J, Safranow K, Milkiewicz M, Milkiewicz P, Szynkowska A, Stachowska E. Lipidic last breath of life in patients with alcoholic liver disease. Prostaglandins Other Lipid Mediat. 2012;99(1-2):51–56. https://doi.org/10.1016/j.prostaglandins.2012.06.001.

47. Liu H, Beier JI, Arteel GE, Ramsden CE, Feldstein AE, McClain CJ, Kirpich IA. Transient receptor potential vanilloid 1 gene deficiency ameliorates hepatic injury in a mouse model of chronic binge alcohol-induced alcoholic liver disease. Am J Pathol. 2015;185(1):43–54. https://doi.org/10.1016/j.ajpath.2014.09.007.

48. Warner DR, Liu H, Ghosh Dastidar S, Warner JB, Prodhan MAI, Yin X et al. Ethanol and unsaturated dietary fat induce unique patterns of hepatic ω-6 and ω-3 PUFA oxylipins in a mouse model of alcoholic liver disease. PLoS ONE. 2018;13(9):e0204119. https://doi.org/10.1371/journal.pone.0204119.

49. Chen WY, Zhang J, Ghare S, Barve S, McClain C, Joshi-Barve S. Acrolein Is a Pathogenic Mediator of Alcoholic Liver Disease and the Scavenger Hydralazine Is Protective in Mice. Cell Mol Gastroenterol Hepatol. 2016;2(5):685–700. https://doi.org/10.1016/j.jcmgh.2016.05.010.

50. Jeong WI, Osei-Hyiaman D, Park O, Liu J, Bátkai S, Mukhopadhyay P et al. Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell Metab. 2008;7(3):227–235. https://doi.org/10.1016/j.cmet.2007.12.007.

51. Trebicka J, Racz I, Siegmund SV, Cara E, Granzow M, Schierwagen R et al. Role of cannabinoid receptors in alcoholic hepatic injury: steatosis and fibrogenesis are increased in CB2 receptor-deficient mice and decreased in CB1 receptor knockouts. Liver Int. 2011;31(6):860–870. https://doi.org/10.1111/j.1478-3231.2011.02496.x.

52. Louvet A, Teixeira-Clerc F, Chobert MN, Deveaux V, Pavoine C, Zimmer A et al. Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology. 2011;54(4):1217–1226. https://doi.org/10.1002/hep.24524.


Review

For citations:


Kruchinina MV, Parulikova MV, Belkovets AV, Nikolaev KY, Ovsyannikova AK. Features of the fatty acid profile of erythrocyte membranes in patients with fatty liver disease of alcoholic genesis. Meditsinskiy sovet = Medical Council. 2023;(18):84-96. (In Russ.) https://doi.org/10.21518/ms2023-391

Views: 298


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)