Preview

Meditsinskiy sovet = Medical Council

Advanced search

Cognitive impairment and depression

https://doi.org/10.21518/ms2023-246

Abstract

The commonality of cognitive impairment and depression is discussed. Cognitive symptoms are the main symptoms of depressive disorder  and, most often, it is cognitive  impairment that  reduces  the performance and quality of life of depressed patients. The most common  cognitive  disorders  in depressed patients are: attention deficit (both visual and auditory), decrease in the  level of short-term and operative  memory, difficulties in processing  information  of any modality, a decrease in the speed of information processing, as well as difficulties in building an activity program and monitoring her execution. A cognitive symptom that requires further  discussion  is the so-called  cognitive  distortion  – a shift in focus from positive  to negative  stimuli, as well as incorrect reactions  to negative  feedback and decision making. A depressive  episode  develops  against  the background  of dysmetabolic and dysfunctional  cerebral  changes  in the  amygdala,  cingulate  cortex, hippocampus,  orbitofrontal and  mediobasal frontal  cortex. Cognitive impairment in patients who have had depression persists  after recovery from depression;  according  to the figurative expression  adopted in the scientific community of specialists  studying cognitive impairment in depression, each depressive  episode  forms permanent “cognitive scars”. Presumably, cognitive  dysfunction  may be one of the  risk factors  for the  development of a depressive  disorder; depression, in turn, is a risk factor for the development of dementia, including in Alzheimer’s disease and cerebrovascular disease: studies  have shown that the transformation of severe cognitive impairment associated with depression into dementia in elderly patients can reach 70% in five years. The undoubted commonality of depression and cognitive dysfunction is emphasized by the frequency of depression in patients with cognitive impairment.

About the Author

I. S. Preobrazhenskaya
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Irina S. Preobrazhenskaya -  Dr. Sci. (Med.), Professor of the Department of Nervous Diseases  and Neurosurgery, Sklifosovsky Institute  of Clinical Medicine, Sechenov  First Moscow State  Medical University (Sechenov University).

8, Bldg. 2, Trubetskaya  St., Moscow, 119991



References

1. Bahar-Fuchs A, Martyr A, Goh A, Sabatés Ju, Clare L. Cognitive training for people with mild to moderate dementia: a Cochrane Review. BJPsych Advances. 2020;26(2):66–66. https://doi.org/10.1192/bja.2019.74.

2. Fantalis D, Preobrazhenskaya IS. Cognitive, emotional and motor disorders and their impact on the postoperative rehabilitation of neurosurgical patients. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(6):35–40. (In Russ.) https://doi.org/10.14412/2074-2711-2021-6-35-40.

3. Bordovsky SP, Krupenin PM, Rozen AI, Evzikov GYu, Kirichuk YV, Fantalis D, Preobrazhenskaya IS. Postoperative cognitive dysfunction: etiology, clinical features, diagnosis. Meditsinskiy Sovet. 2021;(19):49–56. (In Russ.) https://doi.org/10.21518/2079-701X-2021-19-49-56.

4. Mkhitaryan EA, Vorobieva NM, Tkacheva ON, Kotovskaya YuV, Koberskaya NN, Selezneva EV, Ovcharova LN. The prevalence of cognitive impairment and their association with socioeconomic, demographic and anthropometric factors and geriatric syndromes in people over 65 years of age: data from the Russian epidemiological study EVKALIPT. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(3):44–53. (In Russ.) https://doi.org/10.14412/2074-2711-2022-3-44-53

5. Kindarova AA, Fantalis D, Preobrazhenskaya IS. Nonpharmacological treatment of cognitive impairment: cognitive training guidelines. Meditsinskiy Sovet. 2022;(11):18–26. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-11-18-26.

6. Bordovsky SP, Tolmachev KD, Kriukova KK, Gurina OI, Preobrazhenskaya IS. Cognitive impairment in hospitalized patients with COVID-19. Meditsinskiy Sovet. 2022;(2):24–32. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-2-24-32.

7. Kindarova AA, Fantalis D, Preobrazhenskaya IS. Evaluation of the cognitive-motor training effectiveness in combination with drug therapy among patients with moderate cognitive disorders: the own research results. Meditsinskiy Sovet. 2022;(2):44–51. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-2-44-51.

8. Manly JJ, Tang MX, Schupf N, Stern Y, Vonsattel JP, Mayeux R. Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol. 2008;63(4):494–506. https://doi.org/10.1002/ana.21326.

9. Ishikawa KM, Davis J, Chen JJ, Lim E. The prevalence of mild cognitive impairment by aspects of social isolation. PLoS ONE. 2022;17(6):e0269795. https://doi.org/10.1371/journal.pone.0269795.

10. Röhr S, Pabst A, Riedel-Heller SG, Jessen F, Turana Y, Handajani YS et al. Estimating prevalence of subjective cognitive decline in and across international cohort studies of aging: a COSMIC study. Alzheimers Res Ther. 2020;12(1):167. https://doi.org/10.1186/s13195-020-00734-y.

11. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. Fifth Edition, Text Revision. Washington, DC: American Psychiatric Association; 2022. 1924 p. Available at: https://www.ifeet.org/ files/Diagnostic-and-Statistical-Manual-of-Mental-Disorders,-Fifth-Edition,-Text-Revision--DSM-5-TR---American-Psychiatric-Association---z-lib.org-.epub.pdf.

12. Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chételat G et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014;10(6):844–852. https://doi.org/10.1016/j.jalz.2014.01.001.

13. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8(3):448–460. https://doi.org/10.1017/S1355617702813248.

14. Titarenko AV, Shishkin SV, Shcherbakova LV, Verevkin EG, Hubacek JA, Bobak M, Malyutina SK. Association between marital status and age dynamics of cognitive functions in ageing in a Russian population sample. Meditsinskiy Sovet. 2022;(11):27–35. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-11-27-35.

15. Shamrey VK, Kurasov ES, Zobin YS, Tsygan NV. Possibilities of using laboratory biomarkers for the objective diagnosis of depressive disorders. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(2):34–39. (In Russ.) https://doi.org/10.14412/2074-2711-2021-2-34-39.

16. Tyuvina NA, Stolyarova AE, Morozova DV, Verbitskaya MS. Gender differences in the clinical course of depression in bipolar disorder. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(2):47–55. (In Russ.) https://doi.org/10.14412/2074-2711-2021-2-47-55.

17. Tyuvina NA, Stolyarova AE, Balabanova VV, Bunkova KM, Efremova EN. Depression treatment in women and men with bipolar affective disorder: a comparative study. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(3):59–66. (In Russ.) https://doi.org/10.14412/2074-2711-2021-3-59-66.

18. Petelin DS, Niinoya IV, Sorokina OV, Troshina DV, Voskresenskaya ON, Volel BA. Treatment of mixed anxiety and depressive disorder: results from a observational study of the efficacy and tolerability of agomelatine. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(6):48–54. (In Russ.) https://doi.org/10.14412/2074-2711-2021-6-48-54.

19. Tyuvina NA, Verbitskaya MS, Krenkel GI, Efremova EN. Clinical features of atypical depression in bipolar and recurrent affective disorders, psychogenic depression. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(2):56–63. (In Russ.) https://doi.org/10.14412/2074-2711-2022-2-56-63.

20. Gafarov VV, Gromova EA, Panov DO, Maksimov VN, Gagulin IN, Gafarova AV. Depression and polymorphism G-174C (rs1800795) of the IL-6 gene in an open population of 25–44 year old in Russia/Siberia (WHO international program MONICA-psychosocial). Neurology, Neuropsychiatry, Psychosomatics. 2022;14(5):22–27. (In Russ.) https://doi.org/10.14412/2074-2711-2022-5-22-27.

21. Esin RG, Khaibullina DK. Somatic masks of anxiety disorder and therapy opportunities. Meditsinskiy Sovet. 2022;(23):102–109. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-23-1.

22. Halvorsen M, Høifødt RS, Myrbakk IN, Wang CE, Sundet K, Eisemann M, Waterloo K. Cognitive function in unipolar major depression: a comparison of currently depressed, previously depressed, and never depressed individuals. J Clin Exp Neuropsychol. 2012;34(7):782–790. https://doi.org/10.1080/13803395.2012.683853.

23. Ferguson N, Rice S, Gleeson J, Davey CG, Hetrick SE. The experience of young people receiving cognitive behavioural therapy for major depression: A qualitative study. Early Interv Psychiatry. 2023;17(1):47–56. https://doi.org/10.1111/eip.13290.

24. Disner SG, Beevers CG, Haigh EA, Beck AT. Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci. 2011;12(8):467–477. https://doi.org/10.1038/nrn3027.

25. Kiloh LG. Pseudo-dementia. Acta Psychiatr Scand. 1961;37(4):336–351. https://doi.org/10.1111/j.1600-0447.1961.tb07367.x.

26. Pu S, Yamada T, Yokoyama K, Matsumura H, Kobayashi H, Sasaki N et al. A multi-channel near-infrared spectroscopy study of prefrontal cortex activation during working memory task in major depressive disorder. Neurosci Res. 2011;70(1):91–97. https://doi.org/10.1016/j.neures.2011.01.001.

27. Tae WS, Kim SS, Lee KU, Nam EC, Choi JW, Park JI. Hippocampal shape deformation in female patients with unremitting major depressive disorder. AJNR Am J Neuroradiol. 2011;32(4):671–676. https://doi.org/10.3174/ajnr.A2367.

28. Gorwood P, Corruble E, Falissard B, Goodwin GM. Toxic effects of depression on brain function: impairment of delayed recall and the cumulative length of depressive disorder in a large sample of depressed outpatients. Am J Psychiatry. 2008;165(6):731–739. https://doi.org/10.1176/appi.ajp.2008.07040574.

29. Grant MM, Thase ME, Sweeney JA. Cognitive disturbance in outpatient depressed younger adults: evidence of modest impairment. Biol Psychiatry. 2001;50(1):35–43. https://doi.org/10.1016/s0006-3223(00)01072-6.

30. Rund BR, Sundet K, Asbjørnsen A, Egeland J, Landrø NI, Lund A et al. Neuropsychological test profiles in schizophrenia and non-psychotic depression. Acta Psychiatr Scand. 2006;113(4):350–359. https://doi.org/10.1111/j.1600-0447.2005.00626.x.

31. Allott K, Fisher CA, Amminger GP, Goodall J, Hetrick S. Characterizing neurocognitive impairment in young people with major depression: state, trait, or scar? Brain Behav. 2016;6(10):e00527. https://doi.org/10.1002/brb3.527.

32. Zuckerman H, Pan Z, Park C, Brietzke E, Musial N, Shariq AS et al. Recognition and Treatment of Cognitive Dysfunction in Major Depressive Disorder. Front Psychiatry. 2018;9:655. https://doi.org/10.3389/fpsyt.2018.00655.

33. Greer TL, Kurian BT, Trivedi MH. Defining and measuring functional recovery from depression. CNS Drugs. 2010;24(4):267–284. https://doi.org/10.2165/11530230-000000000-00000.

34. Conradi HJ, Ormel J, de Jonge P. Presence of individual (residual) symptoms during depressive episodes and periods of remission: a 3-year prospective study. Psychol Med. 2011;41(6):1165–1174. https://doi.org/10.1017/S0033291710001911.

35. Lam RW, Kennedy SH, Mclntyre RS, Khullar A. Cognitive dysfunction in major depressive disorder: effects on psychosocial functioning and implications for treatment. Can J Psychiatry. 2014;59(12):649–654. https://doi.org/10.1177/070674371405901206.

36. Christensen MV, Kyvik KO, Kessing LV. Cognitive function in unaffected twins discordant for affective disorder. Psychol Med. 2006;36(8):1119–1129. https://doi.org/10.1017/S0033291706007896.

37. Hsu KJ, Young-Wolff KC, Kendler KS, Halberstadt LJ, Prescott CA. Neuropsychological deficits in major depression reflect genetic/familial risk more than clinical history: a monozygotic discordant twin-pair study. Psychiatry Res. 2014;215(1):87–94. https://doi.org/10.1016/j.psychres.2013.10.037.

38. Sáez-Fonseca JA, Lee L, Walker Z. Long-term outcome of depressive pseudodementia in the elderly. J Affect Disord. 2007;101(1-3):123–129. https://doi.org/10.1016/j.jad.2006.11.004.

39. Chi S, Yu JT, Tan MS, Tan L. Depression in Alzheimer’s disease: epidemiology, mechanisms, and management. J Alzheimers Dis. 2014;42(3):739–755. https://doi.org/10.3233/JAD-140324.

40. Buysse DJ, Thompson W, Scott J, Franzen PL, Germain A, Hall M et al. Daytime symptoms in primary insomnia: a prospective analysis using ecological momentary assessment. Sleep Med. 2007;8(3):198–208. https://doi.org/10.1016/j.sleep.2006.10.006.

41. Puchkova AN, Poluektov MG. Sleep as a biological rhythm: clinical aspects. Meditsinskiy sovet. 2021;(2):56–61. (In Russ.) https://doi.org/10.21518/2079-701X-2021-2-56-61.

42. Pchelina PV, Sursaev VA, Poluektov MG. Information overload and sleep disorders. Meditsinskiy Sovet. 2022;(11):54–60. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-11-54-60.

43. Ebzeeva EYu, Polyakova OA. Anxiety and sleep disorders. Meditsinskiy Sovet. 2022;(11):108–113. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-11-108-113.

44. Jelicic M, Bosma H, Ponds RW, Van Boxtel MP, Houx PJ, Jolles J. Subjective sleep problems in later life as predictors of cognitive decline. Report from the Maastricht Ageing Study (MAAS). Int J Geriatr Psychiatry. 2002;17(1):73–77. https://doi.org/10.1002/gps.529.

45. Noh HJ, Joo EY, Kim ST, Yoon SM, Koo DL, Kim D et al. The relationship between hippocampal volume and cognition in patients with chronic primary insomnia. J Clin Neurol. 2012;8(2):130–138. https://doi.org/10.3988/jcn.2012.8.2.130.

46. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377. https://doi.org/10.1126/science.1241224.

47. Choe YM, Byun MS, Yi D, Lee JH, Jeon SY, Sohn BK et al. Sleep experiences during different lifetime periods and in vivo Alzheimer pathologies. Alzheimers Res Ther. 2019;11(1):79. https://doi.org/10.1186/s13195-019-0536-6.

48. Agüera-Ortiz L, García-Ramos R, Grandas Pérez FJ, López-Álvarez J, Montes Rodríguez JM, Olazarán Rodríguez FJ et al. Depression in Alzheimer’s Disease: A Delphi Consensus on Etiology, Risk Factors, and Clinical Management. Front Psychiatry. 2021;12:638651. https://doi.org/10.3389/fpsyt.2021.638651.

49. Umemura T, Kawamura T, Umegaki H, Mashita S, Kanai A, Sakakibara T et al. Endothelial and inflammatory markers in relation to progression of ischaemic cerebral small-vessel disease and cognitive impairment: a 6-year longitudinal study in patients with type 2 diabetes mellitus. J Neurol Neurosurg Psychiatry. 2011;82(11):1186–1194. https://doi.org/10.1136/jnnp.2010.217380.

50. Kulesh AA, Emelin AYu, Bogolepova AN, Doronina OB, Zakharov VV, Kolokolov OV et al. Clinical manifestations and issues of diagnosis of chronic cerebrovascular disease (chronic cerebral ischemia) at an early (pre-dementia) stage. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(1):4–12. (In Russ.) https://doi.org/10.14412/2074-2711-2021-1-4-12.

51. Starchina YuA, Zakharov VV. Cognitive impairment in hypertension. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(1):113–118. (In Russ.) https://doi.org/10.14412/2074-2711-2021-1-113-118.

52. Emelin AY, Lobzin VY. Criteria for diagnosis and classification of vascular cognitive impairment. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(6):131–138. (In Russ.) https://doi.org/10.14412/2074-2711-2022-6-131-138.

53. Mezhmidinova SK, Zakharov VV, Vakhnina NV. Depression, anxiety and motivation in arterial hypertension. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(2):40–46. (In Russ.) https://doi.org/10.14412/2074-2711-2021-2-40-46.

54. Grishina DA, Lokshina AB. Diagnosis and treatment of vascular cognitive impairments. Meditsinskiy Sovet. 2021;(2):45–54. (In Russ.) https://doi.org/10.21518/2079-701X-2021-2-45-54.

55. Shishkova VN. Cognitive disorders in patients with cerebrovascular diseases in therapeutic practice: diagnostic and management algorithms. Meditsinskiy Sovet. 2022;(23):33–40. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-23-33-40.

56. Grishina DA, Lokshina AB. Issues of diagnosis and treatment of mild cognitive impairment. Meditsinskiy Sovet. 2022;(21):46–53. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-21-46-53.

57. Koberskaya NN. Cardiovascular risk factors for cognitive deficiency and options for correction. Meditsinskiy Sovet. 2022;(2):35–43. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-2-35-43

58. Sapsford TP, Johnson SR, Headrick JP, Branjerdporn G, Adhikary S, Sarfaraz M, Stapelberg NJC. Forgetful, sad and old: Do vascular cognitive impairment and depression share a common pre-disease network and how is it impacted by ageing? J Psychiatr Res. 2022;156:611–627. https://doi.org/10.1016/j.jpsychires.2022.10.071.

59. Fischer C, Bozanovic R, Atkins JH, Rourke SB. Treatment of delusions in Alzheimer’s disease--response to pharmacotherapy. Dement Geriatr Cogn Disord. 2006;22(3):260–266. https://doi.org/10.1159/000094975.

60. Huang YJ, Lin CH, Lane HY, Tsai GE. NMDA Neurotransmission Dysfunction in Behavioral and Psychological Symptoms of Alzheimer’s Disease. Curr Neuropharmacol. 2012;10(3):272–285. https://doi.org/10.2174/157015912803217288.

61. Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front Neurosci. 2019;13:43. https://doi.org/10.3389/fnins.2019.00043.

62. Wang R, Reddy PH. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J Alzheimers Dis. 2017;57(4):1041–1048. https://doi.org/10.3233/JAD-160763.

63. Fessel J. Prevention of Alzheimer’s disease by treating mild cognitive impairment with combinations chosen from eight available drugs. Alzheimers Dement (N Y). 2019;5:780–788. Published 2019 Nov 16. https://doi.org/10.1016/j.trci.2019.09.019.

64. Chen HS, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem. 2006;97(6):1611–1626. https://doi.org/10.1111/j.1471-4159.2006.03991.x.

65. Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci U S A. 2013;110(27):E2518–E2527. https://doi.org/10.1073/pnas.1306832110.

66. Ramaswamy S, Madabushi J, Hunziker J, Bhatia SC, Petty F. An Open-Label Trial of Memantine for Cognitive Impairment in Patients with Posttraumatic Stress Disorder. J Aging Res. 2015;2015:934162. https://doi.org/10.1155/2015/934162.

67. Pelton GH, Harper OL, Roose SP, Marder K, D’Antonio K, Devanand DP. Combined treatment with memantine/es-citalopram for older depressed patients with cognitive impairment: a pilot study. Int J Geriatr Psychiatry. 2016;31(6):648–655. https://doi.org/10.1002/gps.4375.

68. Serra G, Demontis F, Serra F, De Chiara L, Spoto A, Girardi P et al. Memantine: New prospective in bipolar disorder treatment. World J Psychiatry. 2014;4(4):80–90. https://doi.org/10.5498/wjp.v4.i4.80.

69. Keck PEJr, Hsu HA, Papadakis K, Russo JJr. Memantine efficacy and safety in patients with acute mania associated with bipolar I disorder: a pilot evaluation. Clin Neuropharmacol. 2009;32(4):199–204. https://doi.org/10.1097/WNF.0b013e318184fae2


Review

For citations:


Preobrazhenskaya IS. Cognitive impairment and depression. Meditsinskiy sovet = Medical Council. 2023;(21):34-43. (In Russ.) https://doi.org/10.21518/ms2023-246

Views: 609


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)