Possibilities of activation of mucociliary transport in patients with inflammatory diseases of the nose and paranasal sinuses
https://doi.org/10.21518/ms2024-076
Abstract
Impaired mucociliary clearance is the main mechanism of pathogenesis of acute and chronic diseases of the nose and paranasal sinuses. Viral infections have a negative impact on the condition of the mucous membranes of the upper respiratory tract, increasing the secretion of mucus by goblet cells, increasing its viscosity and reducing the intensity of the beating of cilia, making it difficult to remove mucus from the lumen of the respiratory tract and sinuses. The article discusses approaches to the treatment of acute and chronic sinusitis from the perspective of improving the functioning of mucociliary transport. Up-to-date requirements for drug therapy of both acute and chronic diseases of the nose and paranasal sinuses first necessitate a reasonable, evidence-based approach to the prescription of antibacterial agents, as the bacterial diseases account for no more than 2% of clinical cases in the sinusitis pattern, and even in this group, antibiotic therapy can only be prescribed in case of chronic, severe or complicated course of the disease. However, as most episodes of inflammatory diseases of the nose and paranasal sinuses are directly or indirectly associated with viral infection and post-viral changes, the next challenge facing the clinician is the choice of optimal therapy targeting the main link in the pathogenesis of the disease – correction of impaired mucociliary clearance. And the third issue that needs to be solved in planning drug therapy is the effectiveness and safety of the prescribed drug with the aim to minimize the risk of side effects. The authors of the article point to the effectiveness of the use of the herbal medicine Respero Myrtol, which has a mucolytic, anti-inflammatory and antibacterial effect, in the treatment of acute and chronic sinusitis, as well as protracted forms of rhinitis
About the Authors
A. V. GurovRussian Federation
Alexander V. Gurov, Dr. Sci. (Med.), Professor of the Department of Otorhinolaryngology named after Acad. B.S. Preobrazhensky, Faculty of Medicine, Pirogov Russian National Research Medical University; Senior Researcher, Department of Epidemiology, Methodology and Scientific Forecasting, Sverzhevsky Scientific Research Clinical Institute of Otorhinolaryngology
1, Ostrovityanov St., Moscow, 117997, Russia;
18a, Bldg. 2, Zagorodnoe Shosse, Moscow, 117152, Russia
M. A. Yushkina
Russian Federation
Marina A. Yushkina, Cand. Sci. (Med.), Associate Professor of the Department of Otorhinolaryngology named after Acad. B.S. Preobrazhensky, Faculty of Medicine, Pirogov Russian National Research Medical University; Associate Professor of the Educational Department, Sverzhevsky Scientific Research Clinical Institute of Otorhinolaryngology
1, Ostrovityanov St., Moscow, 117997, Russia;
18a, Bldg. 2, Zagorodnoe Shosse, Moscow, 117152, Russia
A. V. Muzhichkova
Russian Federation
Аnna V. Muzhichkova, Cand. Sci. (Med.), Assistant of the Department of Otorhinolaryngology Named after Acad. B.S. Preobrazhensky, Faculty of Medicine, Pirogov Russian National Research Medical University; Associate Professor of the Educational Department, Sverzhevsky Scientific Research Clinical Institute of Otorhinolaryngology
1, Ostrovityanov St., Moscow, 117997, Russia;
18a, Bldg. 2, Zagorodnoe Shosse, Moscow, 117152, Russia
References
1. Gurov AV, Yushkina MA. Adequate mucociliary clearance as a factor in the prevention and control of purulent-inflammatory pathology of the ENT organs. Meditsinskiy Sovet. 2021;(6):29–34. (In Russ.) https://doi.org/10.21518/2079-701X-2021-6-29-34.
2. Gurov AV, Yushkina MA, Muzhichkova AV. Postviral rhinosinusitis, focus on pathogenetic therapy. Vestnik OtoRinoLaringologii. 2023;88(3):38–43. (In Russ.) https://doi.org/10.17116/otorino20228803138.
3. Braiman A, Priel Z. Efficient mucociliary transport relies on efficient regulation of ciliary beating. Respir Physiol Neurobiol. 2008;163(1-3):202–207. https://doi.org/10.1016/j.resp.2008.05.010.
4. Lutsenko MT. Morphofunctional characteristic of airway ciliary epithelium: new scientific information to the previous views. Bulletin Physiology and Pathology of Respiration. 2015;(57):120–129. (In Russ.) Available at: https://cfpd.elpub.ru/jour/article/view/756/.
5. Bustamante-Marin XM, Ostrowski LE. Cilia and Mucociliary Clearance. Cold Spring Harb Perspect Biol. 2017;9(4):a028241. https://doi.org/10.1101/csh-perspect.a028241.
6. Munkholm M, Mortensen J. Mucociliary clearance: pathophysiological aspects. Clin Physiol Funct Imaging. 2014;34(3):171–177. https://doi.org/10.1111/cpf.12085.
7. Song YH, Mandelkow E. The anatomy of flagellar microtubules: polarity, seam, junctions, and lattice. J Cell Biol. 1995;128(1-2):81–94. https://doi.org/10.1083/jcb.128.1.81.
8. Rutland J, Griffin WM, Cole PJ. Human ciliary beat frequency in epithelium from intrathoracic and extrathoracic airways. Am Rev Respir Dis. 1982;125(1):100–105. https://doi.org/10.1164/arrd.1982.125.1.100.
9. Yager J, Chen TM, Dulfano MJ. Measurement of frequency of ciliary beats of human respiratory epithelium. Chest. 1978;73(5):627–633. https://doi.org/10.1378/chest.73.5.627.
10. Tamalet A, Clement A, Roudot-Thoraval F, Desmarquest P, Roger G, Boulé M et al. Abnormal central complex is a marker of severity in the presence of partial ciliary defect. Pediatrics. 2001;108(5):E86. https://doi.org/10.1542/peds.108.5.e86.
11. Mall MA. Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv. 2008;21(1):13–24. https://doi.org/10.1089/jamp.2007.0659.
12. Heikkinen T, Järvinen A. The common cold. Lancet. 2003;361(9351):51–59. https://doi.org/10.1016/S0140-6736(03)12162-9.
13. Nokso-Koivisto J, Kinnari TJ, Lindahl P, Hovi T, Pitkäranta A. Human picornavirus and coronavirus RNA in nasopharynx of children without concurrent respiratory symptoms. J Med Virol. 2002;66(3):417–420. https://doi.org/10.1002/jmv.2161.
14. Greenberg SB. Update on rhinovirus and coronavirus infections. Semin Respir Crit Care Med. 2011;32(4):433–446. https://doi.org/10.1055/s-0031-1283283.
15. Winther B. Rhinovirus infections in the upper airway. Proc Am Thorac Soc. 2011;8(1):79–89. https://doi.org/10.1513/pats.201006-039RN.
16. Peltola VT, McCullers JA. Respiratory viruses predisposing to bacterial infections: role of neuraminidase. Pediatr Infect Dis J. 2004;23(Suppl. 1): S87–97. https://doi.org/10.1097/01.inf.0000108197.81270.35.
17. Лопатин АС. Ринит. М.: Литтерра; 2010. 424 с.
18. Arcimowicz M. Acute sinusitis in daily clinical practice. Otolaryngol Pol. 2021;75(4):40–50. https://doi.org/10.5604/01.3001.0015.2378.
19. Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl. 29):1–464. https://doi.org/10.4193/Rhin20.600.
20. Bleier BS, Paz-Lansberg M. Acute and Chronic Sinusitis. Med Clin North Am. 2021;105(5):859–870. https://doi.org/10.1016/j.mcna.2021.05.008.
21. Gwaltney JM Jr. Acute community acquired bacterial sinusitis: To treat or not to treat. Can Respir J. 1999;6(Suppl. A):46A–50A. Available at: https://pubmed.ncbi.nlm.nih.gov/10202234/.
22. Subcommittee on Management of Sinusitis and Committee on Quality Improvement. Clinical practice guideline: management of sinusitis. Pediatrics. 2001;108(3):798–808. https://doi.org/10.1542/peds.108.3.798.
23. Cho DY, Hunter RC, Ramakrishnan VR. The Microbiome and Chronic Rhinosinusitis. Immunol Allergy Clin North Am. 2020;40(2):251–263. https://doi.org/10.1016/j.iac.2019.12.009.
24. Hauser LJ, Feazel LM, Ir D, Fang R, Wagner BD, Robertson CE et al. Sinus culture poorly predicts resident microbiota. Int Forum Allergy Rhinol. 2015;5(1):3–9. https://doi.org/10.1002/alr.21428.
25. Araujo E, Dall C, Cantarelli V, Pereira A, Mariante AR. Microbiology of middle meatus in chronic rhinosinusitis. Braz J Otorhinolaryngol. 2007;73(4):549–555. https://doi.org/10.1016/s1808-8694(15)30108-7.
26. Ovchinnikov AYu, Edzhe MA, Khon EM, Korostelev SA. Acute rhinosinusitis: basic misconceptions and the possibilities of standardized phitotherapy. Meditsinskiy Sovet. 2016;(6):28–31. (In Russ.) https://doi.org/10.21518/ 2079-701X-2016-6-28-31.
27. Kiselev AB, Chaukina VA, Andamova OV, Avtushko AS, Garshina EV. The effectiveness of essential oils in the treatment of acute viral rhinosinusitis. Meditsinskiy Sovet. 2023;(7):33–38. (In Russ.) https://doi.org/10.21518/ms2023-116.
28. Han D, Wang N, Zhang L. The effect of myrtol standardized on human nasal ciliary beat frequency and mucociliary transport time. Am J Rhinol Allergy. 2009;23(6):610–614. https://doi.org/10.2500/ajra.2009.23.3401.
29. Zeil S, Schwanebeck U, Vogelberg C. Tolerance and effect of an addon treatment with a cough medicine containing ivy leaves dry extract on lung function in children with bronchial asthma. Phytomedicine. 2014;21(10):1216–1220. https://doi.org/10.1016/j.phymed.2014.05.006.
30. Begrow F, Böckenholt C, Ehmen M, Wittig T, Verspohl EJ. Effect of myrtol standardized and other substances on the respiratory tract: ciliary beat frequency and mucociliary clearance as parameters. Adv Ther. 2012;29(4):350–358. https://doi.org/10.1007/s12325-012-0014-z.
31. Kaschke O, Behrbohm H, Sydow K. The Influence of a Secretolytic Drug on Mucociliary Clearance of the Maxillary Sinus. J Rhinol. 1997;4(1):29–33.
32. Li YY, Liu J, Li CW, Subramaniam S, Chao SS, Yu FG et al. Myrtol standardized affects mucociliary clearance. Int Forum Allergy Rhinol. 2017;7(3): 304–311. https://doi.org/10.1002/alr.21878.
33. Bomblies L, Sonnenschein R. Antimicrobial action. In: Wittig T (ed.). Myrtol standardized – A Clinical Documentation. Ergebnisse-Verlag; 2005, pp. 42–43.
34. Rantzsch U, Vacca G, Dück R, Gillissen A. Anti-inflammatory effects of Myrtol standardized and other essential oils on alveolar macrophages from patients with chronic obstructive pulmonary disease. Eur J Med Res. 2009;14(Suppl. 4):205–209. https://doi.org/10.1186/2047-783x-14-s4-205.
35. Ryazantsev SV, Artyushkin SA, Budkovaya MA. Place of mukoactive therapy of rinosinusitis in international and Russian guidelines. Meditsinskiy Sovet. 2017;(16):24–27. (In Russ.) https://doi.org/10.21518/2079-701X-2017-16-24-27.
36. Svistushkin VM, Nikiforova GN, Merkushinа AV, Dedova MG. The use of herbal remedies in the prevention and treatment of pathology of the respiratory tract. Meditsinskiy Sovet. 2019;(12):64–69. (In Russ.) https://doi.org/10.21518/2079-701X-2019-12-64-69.
37. Wu Y, Wang X, Huang D, Pei C, Li S, Wang Z. Gelomyrtol for acute or chronic sinusitis: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 2020;99(23):e20611. https://doi.org/10.1097/MD.0000000000020611.
Review
For citations:
Gurov AV, Yushkina MA, Muzhichkova AV. Possibilities of activation of mucociliary transport in patients with inflammatory diseases of the nose and paranasal sinuses. Meditsinskiy sovet = Medical Council. 2024;(7):92-97. (In Russ.) https://doi.org/10.21518/ms2024-076