Preview

Meditsinskiy sovet = Medical Council

Advanced search

Microribonucleic acids as potential markers in cardiovascular diseases

https://doi.org/10.21518/ms2024-107

Abstract

Cardiovascular diseases (CVDs) are one of the most common causes of death in the developed as well as in the developing world. Despite improvements in primary prevention, the prevalence of CVD has continued to rise in recent years. Thus, the issues of molecular pathophysiology of CVD and search for new biomarkers related to early and reliable prevention and diagnosis of these diseases still hold relevance today. New genomic techniques provide innovative tools to solve this problem. A research of the current scientific literature clearly indicates that among transcriptomic biomarkers, micro-ribonucleic acids (miRNAs) are the most promising. The microRNAs (miRNAs) are small (~22 nucleotides) non-coding RNAs which regulate gene expression at the post-transcriptional level via inhibition of the translation of messenger RNA (mRNA) or by inducing the degradation of specific miRNAs. The lack of consensus regarding methodologies used for miRNA quantification is one of the main limiting factors in the application of these transcripts. Various studies have proposed the use of circulating miRNAs as biological markers of the acute coronary syndrome, coronary artery disease, heart failure, arrhythmias, myocardial infarction, etc. MiRNAs are involved in many cellular processes such as proliferation, vasculogenesis, apoptosis, cell growth and differentiation, and tumorigenesis.
This review considers the most fully studied and clinically significant miRNAs, which physiological role makes them potential biomarkers for various CVDs.

About the Authors

A. V. Balbutsky
Vishnevsky National Medical Research Center of Surgery
Russian Federation

Alexander V. Balbutsky, Junior Researcher of the Clinical Diagnostic Laboratory

27, Bolshaya Serpukhovskaya St., Moscow, 117997



A. Sh. Revishvili
Vishnevsky National Medical Research Center of Surgery
Russian Federation

Amiran Sh. Revishvili, Acad. RAS, Dr. Sci. (Med.), Professor, Director

27, Bolshaya Serpukhovskaya St., Moscow, 117997



V. M. Zemskov
Vishnevsky National Medical Research Center of Surgery
Russian Federation

Vladimir M. Zemskov, Dr. Sci. (Med.), Professor, Chief Researcher of Clinical Diagnostic Laboratory

27, Bolshaya Serpukhovskaya St., Moscow, 117997



M. S. Solovyova
Vishnevsky National Medical Research Center of Surgery
Russian Federation

Marina S. Solovyova, Cand. Sci. (Med.), Senior Researcher of the Clinical Diagnostic Laboratory

27, Bolshaya Serpukhovskaya St., Moscow, 117997



M. N. Kozlova
Vishnevsky National Medical Research Center of Surgery
Russian Federation

Maria N. Kozlova, Cand. Sci. (Med.), Leading Researcher, Department of Thermal Injuries

27, Bolshaya Serpukhovskaya St., Moscow, 117997



N. S. Shishkina
Vishnevsky National Medical Research Center of Surgery
Russian Federation

Nadezhda S. Shishkina, Junior Researcher of Clinical Diagnostic Laboratory

27, Bolshaya Serpukhovskaya St., Moscow, 117997



V. A. Popov
Vishnevsky National Medical Research Center of Surgery
Russian Federation

Vadim A. Popov, Dr. Sci. (Med.), Professor, Cardiovascular Surgeon, Head of the Department of Cardiovascular Surgery

27, Bolshaya Serpukhovskaya St., Moscow, 117997



G. P. Plotnikov
Vishnevsky National Medical Research Center of Surgery
Russian Federation

Georgy P. Plotnikov, Dr. Sci. (Med.), Anesthesiologist-Resuscitator, Head of the Department of Resuscitation and Intensive Care

27, Bolshaya Serpukhovskaya St., Moscow, 117997



A. M. Zemskov
Burdenko Voronezh State Medical University
Russian Federation

Andrey M. Zemskov, Dr. Sci. (Med.), Professor, Head of the Department of Microbiology

10, Studencheskaya St., Voronezh, 394000



V. S. Demidova
Vishnevsky National Medical Research Center of Surgery
Russian Federation

Valentina S. Demidova, Dr. Sci. (Biol.), Head of the Clinical Diagnostic Laboratory

27, Bolshaya Serpukhovskaya St., Moscow, 117997



S. V. Suchkov
Russian Biotechnological University (ROSBIOTECH)
Russian Federation

Sergey V. Suchkov, Dr. Sci. (Med.), Professor, Head of the Department of Personalized Medicine, Precision Nutrition and Biodesign, Institute
of Biotechnology and Global Health

11, Volokolamskoe Shosse, Moscow, 125080

 



O. S. Vasiliev
Research Institute of Sports and Sports Medicine
Russian Federation

Oleg S. Vasiliev, Dr. Sci. (Med.), Leading Researcher

4, Sirenevyy Boulevard, Moscow, 105122



References

1. Kim SJ, Mesquita FCP, Hochman-Mendez C. New Biomarkers for Cardiovascular Disease. Tex Heart Inst J. 2023;50(5):e238178. https://doi.org/10.14503/THIJ-23-8178.

2. Çakmak HA, Demir M. MicroRNA and Cardiovascular Diseases. Balkan Med J. 2020;37(2):60–71. https://doi.org/10.4274/balkanmedj.galenos.2020.2020.1.94.

3. Kamyshova ES, Bobkova IN, Kutyrina IM. New insights on microRNAs in diabetic nephropathy: potential biomarkers for diagnosis and therapeutic targets. Diabetes Mellitus. 2017;20(1):42–50. (In Russ.) https://doi.org/10.14341/DM8237.

4. Velikiy DA, Gichkun OE, Shevchenko AO. MicroRNAs: a role in the development of cardiovascular disease, the possibility for clinical application. Klinichescheskaya Laboratornaya Diagnostika. 2018;63(7):403–409. (In Russ.) Available at: https://clinlabdia.ru/article/mikrornk-rol-v-razvitii-serdechno-sos.

5. Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ Action through miRNA Editing. Int J Mol Sci. 2019;20(24):6249. https://doi.org/10.3390/ijms20246249.

6. de Gonzalo-Calvo D, Benítez ID, Pinilla L, Carratalá A, Moncusí-Moix A, Gort-Paniello C et al. Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients. Transl Res. 2021;236:147–159. https://doi.org/10.1016/j.trsl.2021.05.004.

7. Koroleva IA, Nazarenko MS, Kucher AN. Role of microRNA in Development of Instability of Atherosclerotic Plaques. Biochemistry (Moscow). 2018;83(1):34–46. (In Russ.) Available at: http://www.medgenetics.ru/UserFile/File/Doc/Publications/2018/2018-BioChim-Korol-microRNA.pdf.

8. Kucher AN, Nazarenko MS. The Role of MicroRNA in Atherogenesis. Kardiologiya. 2018;57(9):65–76. (In Russ.) https://doi.org/10.18087/cardio.2017.9.10022.

9. Romakina VV, Zhirov IV, Nasonova SN, Zaseeva AV, Kochetov AG, Liang OV, Tereshchenko SN. MicroRNAs as Biomarkers of Cardiovascular Diseases. Kardiologia. 2018;(1):66–71. (In Russ.) https://doi.org/10.18087/cardio.2018.1.10083.

10. Beresneva ON, Zaraiski MI, Kulikov AN, Parastaeva MM, Ivanova GT, Okovityi SV et al. MicroRNA-21 and myocardial remodeling with the reduction of the nephron mass. Arterial Hypertension (Russian Federation). 2019;25(2):191–199. (In Russ.) https://doi.org/10.18705/1607-419X-2019-25-2-191-199.

11. Mishra S, Rizvi A, Pradhan A, Perrone MA, Ali W. Circulating microRNA-126 &122 in patients with coronary artery disease: Correlation with small dense LDL. Prostaglandins Other Lipid Mediat. 2021;153:106536. https://doi.org/10.1016/j.prostaglandins.2021.106536.

12. Liu MN, Luo G, Gao WJ, Yang SJ, Zhou H. miR-29 family: A potential therapeutic target for cardiovascular disease. Pharmacol Res. 2021;166:105510. https://doi.org/10.1016/j.phrs.2021.105510.

13. Kura B, Kalocayova B, Devaux Y, Bartekova M. Potential Clinical Implications of miR-1 and miR-21 in Heart Disease and Cardioprotection. Int J Mol Sci. 2020;21(3):700. https://doi.org/10.3390/ijms21030700.

14. Song Z, Gao R, Yan B. Potential roles of microRNA-1 and microRNA-133 in cardiovascular disease. Rev Cardiovasc Med. 2020;21(1):57. https://doi.org/10.31083/j.rcm.2020.01.577.

15. Fung EC, Butt AN, Eastwood J, Swaminathan R, Sodi R. Circulating microRNA in cardiovascular disease. Advances in Clinical Chemistry. 2019;91:99–122. https://doi.org/10.1016/bs.acc.2019.03.003.

16. Gallant-Behm CL, Piper J, Lynch JM, Seto AG, Hong SJ, Mustoe TA et al. A MicroRNA-29 Mimic (Remlarsen) Represses Extracellular Matrix Expression and Fibroplasia in the Skin. J Invest Dermatol. 2019;139(5):1073–1081. https://doi.org/10.1016/j.jid.2018.11.007.

17. Deng Z, He Y, Yang X, Shi H, Shi A, Lu L, He L. MicroRNA-29: A Crucial Player in Fibrotic Disease. Mol Diagn Ther. 2017;21(3):285–294. https://doi.org/10.1007/s40291-016-0253-9.

18. Li C, Wang N, Rao P, Wang L, Lu D, Sun L. Role of the microRNA-29 family in myocardial fibrosis. J Physiol Biochem. 2021;77(3):365–376. https://doi.org/10.1007/s13105-021-00814-z.

19. Liu Y, Song JW, Lin JY, Miao R, Zhong JC. Roles of MicroRNA-122 in Cardiovascular Fibrosis and Related Diseases. Cardiovasc Toxicol. 2020;20(5):463–473. https://doi.org/10.1007/s12012-020-09603-4.

20. Sun X, Zhang M, Sanagawa A, Mori C, Ito S, Iwaki S et al. Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL cholesterol. Thromb J. 2012;10(1):16. https://doi.org/10.1186/1477-9560-10-16.

21. Zhang J, Guo J, Wu X, Wang X, Zhu Z, Wang Y et al. TWIST1 induces phenotypic switching of vascular smooth muscle cells by downregulating p68 and microRNA-143/145. FEBS Open Bio. 2021;11(3):932–943. https://doi.org/10.1002/2211-5463.13092.

22. Zhao W, Zhao SP, Zhao YH. MicroRNA-143/-145 in Cardiovascular Diseases. Biomed Res Int. 2015;2015:531740. https://doi.org/10.1155/2015/531740.

23. Wang X, Dong Y, Fang T, Wang X, Chen L, Zheng C et al. Circulating MicroRNA-423-3p Improves the Prediction of Coronary Artery Disease in a General Population – Six-Year Follow-up Results From the ChinaCardiovascular Disease Study. Circ J. 2020;84(7):1155–1162. https://doi.org/10.1253/circj.CJ-19-1181.

24. Xia X, Wang Y, Zheng JC. The microRNA-17 ~ 92 Family as a Key Regulator of Neurogenesis and Potential Regenerative Therapeutics of Neurological Disorders. Stem Cell Rev Rep. 2022;18(2):401–411. https://doi.org/10.1007/s12015-020-10050-5.

25. Danielson LS, Park DS, Rotllan N, Chamorro-Jorganes A, Guijarro MV, Fernandez-Hernando C et al. Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J. 2013;27(4):1460–1467. https://doi.org/10.1096/fj.12-221994.

26. Gu H, Liu Z, Zhou L. Roles of miR-17-92 Cluster in Cardiovascular Development and Common Diseases. Biomed Res Int. 2017;2017:9102909. https://doi.org/10.1155/2017/9102909.

27. Satoh M, Minami Y, Takahashi Y, Tabuchi T, Nakamura M. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J Card Fail. 2010;16(5):404–410. https://doi.org/10.1016/j.cardfail.2010.01.002.

28. Han Z, Zhang L, Yuan L, Liu X, Chen X, Ye X et al. Change of plasma microRNA-208 level in acute myocardial infarction patients and its clinical significance. Ann Transl Med. 2015;3(20):307. https://doi.org/10.3978/j.issn.2305-5839.2015.10.25.

29. Zhao X, Wang Y, Sun X. The functions of microRNA-208 in the heart. Diabetes Res Clin Pract. 2020;160:108004. https://doi.org/10.1016/j.diabres.2020.108004.

30. Wang J, Xu L, Tian L, Sun Q. Circulating microRNA-208 family as early diagnostic biomarkers for acute myocardial infarction: A meta-analysis. Medicine (Baltimore). 2021;100(51):e27779. https://doi.org/10.1097/MD.0000000000027779.

31. Welsh P, Preiss D, Hayward C, Shah ASV, McAllister D, Briggs A et al. Cardiac Troponin T and Troponin I in the General Population. Circulation. 2019;139(24):2754–2764. https://doi.org/10.1161/CIRCULATIONAHA.118.038529.

32. Huang Y, Li J. MicroRNA208 family in cardiovascular diseases: therapeutic implication and potential biomarker. J Physiol Biochem. 2015;71(3):479–486. https://doi.org/10.1007/s13105-015-0409-9.

33. Bao MH, Feng X, Zhang YW, Lou XY, Cheng Y, Zhou HH. Let-7 in cardiovascular diseases, heart development and cardiovascular differentiation from stem cells. Int J Mol Sci. 2013;14(11):23086–23102. https://doi.org/10.3390/ijms141123086.

34. Krzywińska O, Bracha M, Jeanniere C, Recchia E, Kędziora Kornatowska K, Kozakiewicz M. Meta-Analysis of the Potential Role of miRNA-21 in Cardiovascular System Function Monitoring. Biomed Res Int. 2020;2020:4525410. https://doi.org/10.1155/2020/4525410.

35. Alieva AM, Reznik EV, Teplova NV, Melikulov AA, Akhmedova MF, Kotikova IA, Nikitin IG. MicroRNA-34a in cardiovascular disease: a glimpse into the future. Russian Cardiology Bulletin. 2023;18(1):14–22. (In Russ.) https://doi.org/10.17116/Cardiobulletin20231801114.


Review

For citations:


Balbutsky AV, Revishvili AS, Zemskov VM, Solovyova MS, Kozlova MN, Shishkina NS, Popov VA, Plotnikov GP, Zemskov AM, Demidova VS, Suchkov SV, Vasiliev OS. Microribonucleic acids as potential markers in cardiovascular diseases. Meditsinskiy sovet = Medical Council. 2024;(6):283-290. (In Russ.) https://doi.org/10.21518/ms2024-107

Views: 258


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)