Results of the use of biologically active foodadditives in children with signs of asthenia and asthenopia
https://doi.org/10.21518/ms2024-263
Abstract
Introduction. According to ophthalmologists, the number of patients with signs of asthenia and asthenopia has increased substantially over the past few years. It is a known fact that good nutrition, adequate intake of vitamins and minerals with diet, compliance with work-rest regime is a necessary condition for the prevention and elimination of clinical presentations of these pathologies.
Aim. To assess the results of the use of biologically active food additives Doppelherz® Kinder Omega-3 for children from 7 years old and Doppelgerz® Kinder multivitamins for children in paediatric population with signs of asthenia and asthenopia.
Materials and methods. A total of 90 children aged 7-12 years with signs of reactive asthenia and asthenopia were included in the study. Patients in group 1 received the biologically active food additive Doppelherz® Kinder Omega-3 for children from 7 years old; patients in group 2 – Doppelgerz® Kinder multivitamins for children; patients in group 3 – did not receive any biologically active food additives or vitamins.
Results. The CISS questionnaire showed a reduction in the severity of signs of asthenopia in group 1, less pronounced reduction of signs in group 2, and insignificant reduction in group 3. The Swanson scale showed a decrease in the degree of inattention in group 1, a decrease in the degree of inattention and impulsivity in group 2. I.K. Shats questionnaire showed that asthenia decreased from severe to moderate in group 1, and from severe to a fatigue reaction in group 2. In all groups that complied with the general recommendations, an increase in the relative accommodation reserve was observed. Evidence from pupillography indicates decreased accommodation tension, which was more pronounced in group 2 as compared with group 1, and insignificant in group 3. The Norn test and the tear meniscus height values confirmed an improvement in the tear film status, which was more pronounced in group 1 than in group 2.
Discussion. There are three main directions of the treatment strategy for asthenia: etiopathogenetic, nonspecific and symptomatic therapy. Targeted addition of vitamin and mineral complexes to a child’s diet is a reasonable and integral part of the pathogenetic treatment of asthenia and asthenopia.
Conclusion. A decrease in signs of asthenopia, improvement of the tear film state, reduction in signs of inattention due to increased concentration, and improvement of memory was observed in the group of patients who used the biologically active food additives with omega-3 for children from 7 years old, as compared to the control group. A decrease in signs of asthenia, and improvement of the tear film state was observed in the group of patients who used multivitamins for children — chew strips with raspberry flavour.
About the Authors
M. A. FrolovRussian Federation
Mikhail A. Frolov, Dr. Sci. (Med.), Professor, Head of the Department of Eye Diseases
6, Miklukho-Maklai St., Moscow, 117198
N. A. Sakhovskaya
Russian Federation
Natalya A. Sakhovskaya, Cand. Sci. (Med.), Ophthalmologist
6, Miklukho-Maklai St., Moscow, 117198
7А, Bldg. 22, Staropetrovsky Proezd, Moscow, 121351
K. A. Kazakova
Russian Federation
Ksenia A. Kazakova, Cand. Sci. (Med.), Ophthalmologist
7А, Bldg. 22, Staropetrovsky Proezd, Moscow, 121351
V. S. Luchin
Russian Federation
Vadim S. Luchin, Head of the Training Department
8, Bldg. 1, Oktyabrsky Lane, Moscow, 127018
T. I. Gavrilenko
Russian Federation
Tatiana I. Gavrilenko, Resident Doctor at the Department of Eye Diseases
6, Miklukho-Maklai St., Moscow, 117198
References
1. Mirolyubov AV, Koltsov AA, Novikov SA, Sinyukhin AB. Analysis of the possible influence of audiovisual stimuli on the organ of vision. Part I. The influence of audiovisual stimuli on the human body. Actual Optometry. 2011;(2):32–43. (In Russ.) Available at: https://elibrary.ru/ntywqz.
2. Zakharova IN, Mumladze EB, Tvorogova TM, Pshenichnikova II. Asthenic syndrome in the pediatrician practice. Meditsinskiy Sovet. 2016;(16):124–130. (In Russ.) https://doi.org/10.21518/2079-701X-2016-16-124-130.
3. Zakharova IN, Tvorogova TM, Pshenichnikova II, Sgibneva AI. Asthenic syndrome in schoolchildren: from the risk of development to diagnosis and treatment. Pediatrics. Consilium Medicum. 2021;(1):76–83. (In Russ.) Available at: https://pediatria.orscience.ru/2658-6630/article/view/71112.
4. Proskurina OV, Tarutta EP, Iomdina EN, Strakhov VV, Brezhsky VV. A modern classification of asthenopias: clinical forms and stages. Russian Ophthalmological Journal. 2016;9(4):69–73. (In Russ.) Available at: https://roj.igb.ru/jour/article/view/62/.
5. Proskurina OV, Tarutta EP, Iomdina EN, Strakhov VV, Brzhesky VV, Vorontsova TN. Classification of asthenopias proposed by board of accommodation and refraction. Actual Optometry. 2017;(5):3–7. (In Russ.) Available at: https://elibrary.ru/zbknjb.
6. Шаповалов СЛ, Милявская ТИ, Игнатьев СА. Основные формы астенопии. М.: Мик; 2012. 288 с.
7. Овечкин ИГ, Першин КБ, Антонюк ВД. Функциональная коррекция зрения. СПб.: АСП; 2003. 96 с.
8. Безлер ЖА. Дефицит витаминов и минералов у детей: современные методы профилактики. Минск: БГМУ; 2009. 66 с. Режим доступа: https://rep.bsmu.by/bitstream/handle/BSMU/5068/Дефицит%20витаминов%20и%20минералов%20у%20детей.pdf.
9. Koovina NA, Zakharova IN, Zaplatnikov AL, Obynochnaya EG. Correction of vitamin and mineral deficiency in children. Meditsinskiy Sovet. 2013;(8):94–98. (In Russ.) Available at: https://www.med-sovet.pro/jour/article/view/1088.
10. Сомов ЕЕ. Методы офтальмоэргономики. Л.: Наука; 1989. 158 с.
11. Astakhov YuS, Lisochkina AB, Nechiporenko PA, Titarenko AI. Vitrum Vision Forte therapy effect in patients with accommodative asthenopia. Ophthalmology Reports. 2015;8(4):48–53. (In Russ.) https://doi.org/10.17816/OV2015448-53.
12. Egorova EYu, Yudina NV, Gromova OA, Torshin IYu, Slyshalova NN, Khvatova NV. The efficiency of combined micronutrients correcting therapy with preparation Focus. Case report. Oftalmologiya. 2011;8(3):57–61. (In Russ.) Available at: https://elibrary.ru/omscnf.
13. Zakharova MA, Kuroedov AV. Аntioxidants in complex treatment of computer vision syndrome. RMJ Clinical Ophthalmology. 2016;16(1):54–59. (In Russ.) Available at: https://www.rmj.ru/articles/oftalmologiya/Primenenie_antioksidantov_v_kompleksnoy_terapiikompyyuternogo_zritelynogo_sindroma/.
14. Sokolov VO, Morozova NV, Florentseva SS, Sokolov VV, Veselov AV, Morozov MA, Ershova RV. The experience with lutein-containing drug in patients with myopia and computer vision syndrome. RMJ Clinical Ophthalmology. 2017;(1):42–44. (In Russ.) Available at: https://www.rmj.ru/articles/oftalmologiya/Opyt_primeneniya_lyuteinsoderghaschego_kompleksa_u_pacientov_s_miopiey_i_kompyyuternym_zritelynym_sindromom/.
15. Starchina YuA. Use of cereton in neurological care. Neurology, Neuropsychiatry, Psychosomatics. 2011;3(2):81–85. (In Russ.) https://doi.org/10.14412/20742711-2011-152.
16. Belyaeva ES, Sakhovskaya NA, Frolov MA, Gavrilenko TI. Polyunsaturated fatty acids in ophthalmology. Effective Pharmacotherapy. 2023;19(46):34–36. (In Russ.) Available at: https://umedp.ru/articles/polinenasyshchennye_zhirnye_kisloty_v_oftalmologii.html.
17. Asbell PA, Maguire MG, Pistilli M, Ying GS, Szczotka-Flynn LB, Hardten DR et al. N-3 Fatty Acid Supplementation for the Treatment of Dry Eye Disease. N Engl J Med. 2018;378(18):1681–1690. https://doi.org/10.1056/nejmoa1709691.
18. Prozorny AA, Krivoshein AE, Rusanovsky VV. The use of Omega-3 and Omega-6 fatty acids in the treatment of dry eye syndrome. Forcipe. 2021;4(S1):663–664. Access mode: https://ojs3.gpmu.org/index.php/forcipe/article/view/3475.
19. Brzheskiy VV, Golubev SYu, Lebedev OI, Milyudin ES, Apostolova AS, Surov AV et al. New opportunities for complex therapy in patients with dry eye syndrome of various etiologies. Oftalmologija. Vostochnaja Evropa. 2022;12(1):151–163. (In Russ.) Available at: https://recipe.by/wp-content/uploads/2022/02/151-163_oft-1-2022-t12.pdf.
20. Babaeva YuD, Rotova NA, Sabadosh PA. Determinants of intellectual test performance under time pressure. Psychological Studies. 2012;5(25):4. (In Russ.) https://doi.org/10.54359/ps.v5i25.744.
21. Sakhovskaya NA, Frolov MA, Kazakova KA, Kolodkina MG. The history of pupillography and possibility of its using in modern ophthalmology. Ophthalmology in Russia. 2022;19(3):475–481. (In Russ.) https://doi.org/10.18008/1816-5095-2022-3-475-481.
22. Murphy PR, O’Connell RG, O’Sullivan M, Robertson IH, Balsters JH. Pupil diameter covaries with BOLD activity in human locus coeruleus. Hum Brain Mapp. 2014;35(8):4140–4154. https://doi.org/10.1002/hbm.22466.
23. Murphy PR, Vandekerckhove J, Nieuwenhuis S. Pupil-linked arousal determines variability in perceptual decision making. PLoS Comput Biol. 2014;10(9):e1003854. https://doi.org/10.1371/journal.pcbi.1003854.
24. Alnæs D, Sneve MH, Espeseth T, Endestad T, van de Pavert SH, Laeng B. Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. J Vis. 2014;14(4):1. https://doi.org/10.1167/14.4.1.
25. Van den Brink RL, Murphy PR, Nieuwenhuis S. Pupil Diameter Tracks Lapses of Attention. PLoS ONE. 2016;11(10):e0165274. https://doi.org/10.1371/journal.pone.0165274.
26. Koshitz IN, Svetlova OV, Egemberdiev MB, Guseva MG. Traditional and new accommodation mechanisms and their classification. Russian Ophthalmology of Children. 2018;(3):20–36. (In Russ.) Available at: https://eyepress.ru/referatrus/traditsionnye-i-novye-mekhanizmy-akkomodatsii-i-ikh-klassifikatsiya31-10-2023-0-32-21-276
Review
For citations:
Frolov MA, Sakhovskaya NA, Kazakova KA, Luchin VS, Gavrilenko TI. Results of the use of biologically active foodadditives in children with signs of asthenia and asthenopia. Meditsinskiy sovet = Medical Council. 2024;(11):145–154. (In Russ.) https://doi.org/10.21518/ms2024-263