Preview

Meditsinskiy sovet = Medical Council

Advanced search

Immunologic markers for vitiligo

https://doi.org/10.21518/ms2024-317

Abstract

Questions of the etiology and pathogenesis of vitiligo remain open to this day. Of the majority of hypotheses for the development of vitiligo, the leading role today belongs to the autoimmune theory. The most relevant for solving issues of both therapy and diagnosis of the disease are studies devoted to the immunological mechanisms accompanying the development of vitiligo. The article describes both immunological markers of autoimmune diseases of satellites and changes in immunity during the disease itself. The question of the activity of the process sometimes causes great difficulties, both for the doctor, and the patient himself sometimes cannot say for sure whether there is a growth of foci, especially with a widespread process. In the article we touched upon the issues of consideration and immunological markers, which, according to pilot studies, can serve as laboratory indicators of activity. The roles of interleukin 17, imbalance between subpopulations of T-helper lymphocytes type 1 (Th 1) or Th 17 and Tregs and Th 2, cytokine imbalance, JAK1 and JAK2 kinases, CXCL 9, CXCL 10, granzyme B are described.

About the Author

V. V. Petunina
Pirogov Russian National Research Medical University
Russian Federation

Valentina V. Petunina, Cand. Sci. (Med.), Associate Professor the Department of Skin Diseases & Cosmetology

1, Ostrovityanov St., Moscow, 117997



References

1. Gunduz K, Ozturk G, Terzioglu E, Sebik F. T cell subpopulations and IL-2R in vitiligo. J Dermatol. 2004;31(2):94–97. https://doi.org/10.1111/j.1346-8138.2004.tb00514.x.

2. Rezaei N, Gavalas NG, Weetman AP, Kemp EH. Autoimmunity as an aetiological factor in vitiligo. J Eur Acad Dermatol Venereol. 2007;21(7):865–876. https://doi.org/10.1111/j.1468-3083.2007.02228.x.

3. Ezzedine K, Diallo A, Leaute-Labreze C, Seneschal J, Boniface K, CarioAndré M. Pre- vs. post-pubertal onset of vitiligo: multivariate analysis indicates atopic diathesis association in pre-pubertal onset vitiligo. Br J Dermatol. 2012;167(3):490–495. https://doi.org/10.1111/j.1365-2133.2012.11002.x.

4. Vrijman C, Kroon MW, Limpens J, Leeflang MMG, Luiten RM, Van der Veen JPW et al. The prevalence of thyroid disease in patients with vitiligo: a systematic review. Br J Dermatol. 2012;167(6):1224–1235. https://doi.org/10.1111/j.1365-2133.2012.11198.x.

5. Bae JM, Jung HM, Hong BY, Lee JH, Choi WJ, Lee JH, Kim GM. Phototherapy for vitiligo: a systematic review and meta-analysis. JAMA Dermatol. 2017;153(7):666–674. https://doi.org/10.1001/jamadermatol.2017.0002.

6. Eleftheriadou V, Atkar R, Batchelor J, McDonald B, Novakovic L, Patel JV; British Association of Dermatologists’ Clinical Standards Unit. British Association of Dermatologists guidelines for the management of people with vitiligo 2021. Br J Dermatol. 2022;186(1):18–29. https://doi.org/10.1111/bjd.20596.

7. Cui J, Arita Y, Bystryn JC. Cytolytic antibodies to melanocytes in vitiligo. J Invest Dermatol. 1993;100(6):812–815. https://doi.org/10.1111/1523-1747.ep12476636.

8. Singh RK, Lee KM, Vujkovic-Cvijin I, Ucmak D, Farahnik B, Abrouk M et al. The role of IL-17 in vitiligo: A review. Autoimmun Rev. 2016;15(4):397–404. https://doi.org/10.1016/j.autrev.2016.01.004.

9. Bassiouny DA, Shaker O. Role of interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol. 2011;36(3):292–297. https://doi.org/10.1111/j.1365-2230.2010.03972.x.

10. Elela MA, Hegazy RA, Fawzy MM, Rashed LA, Rasheed H. Interleukin 17, interleukin 22 and FoxP3 expression in tissue and serum of non-segmental vitiligo: a case-controlled study on eighty-four patients. Eur J Dermatol. 2013;23(3):350–355. https://doi.org/10.1155/2021/5524566.

11. Kotobuki Y, Tanemura A, Yang L, Itoi S, Wataya-Kaneda M, Murota H et al. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Res. 2012;25(2):219–230. https://doi.org/10.1111/j.1755-148X.2011.00945.x.

12. Pickens SR, Volin MV, Mandelin AM, Kolls JK, Pope RM, Shahrara S. IL-17 contributes to angiogenesis in rheumatoid arthritis. J Immunol. 2010;184(6):3233–3241. https://doi.org/10.4049/jimmunol.0903271.

13. Aroni K, Voudouris S, Ioannidis E, Grapsa A, Kavantzas N, Patsouris E. Increased angiogenesis and mast cells in the centre compared to the periphery of vitiligo lesions. Arch Dermatol Res. 2010;302(8):601–607. https://doi.org/10.1007/s00403-010-1040-9.

14. Basak PY, Adiloglu AK, Ceyhan AM, Tas T, Akkaya VB. The role of helper and regulatory T cells in the pathogenesis of vitiligo. J Am Acad Dermatol. 2009;60(2):256–260. https://doi.org/10.1016/j.jaad.2008.09.048.

15. Khan R, Gupta S, Sharma A. Circulatory levels of T-cell cytokines (interleukin [IL]-2, IL-4, IL-17, and transforming growth factor-β) in patients with vitiligo. J Am Acad Dermatol. 2012;66(3):510–511. https://doi.org/10.1016/j.jaad.2011.07.018.

16. Sharafutdinova LA, Lomonosov KM. Immune aspects of segmentary and nonsegmentary vitiligo. Russian Journal of Skin and Venereal Diseases. 2015;18(2):44–46. (In Russ.) https://doi.org/10.17816/dv36976.

17. Bergqvist C, Ezzedine K. Vitiligo: A Review. Dermatology. 2020;236(6):571–592. https://doi.org/10.1159/000506103.

18. van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, Melief CJ et al. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol. 2009;129(9):2220–2232. https://doi.org/10.1038/jid.2009.32.

19. Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE. New discoveries in the pathogenesis and classification of vitiligo. J Am Acad Dermatol. 2017;77(1):1–13. https://doi.org/10.1016/j.jaad.2016.10.048.

20. Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8⁺ T-cell accumulation in the skin. J Invest Dermatol. 2012;132(7):1869–1876. https://doi.org/10.1038/jid.2011.463.

21. Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6(223):223ra23. https://doi.org/10.1126/scitranslmed.3007811.

22. Nada HR, El Sharkawy DA, Elmasry MF, Rashed LA, Mamdouh S. Expression of Janus Kinase 1 in vitiligo & psoriasis before and after narrow band UVB: a case-control study. Arch Dermatol Res. 2018;310(1):39–46. https://doi.org/10.1007/s00403-017-1792-6.

23. Phan K, Phan S, Shumack S, Gupta M. Repigmentation in vitiligo using janus kinase (JAK) inhibitors with phototherapy: systematic review and Meta-analysis. J Dermatolog Treat. 2022;33(1):173–177. https://doi.org/10.1080/09546634.2020.1735615.

24. Yang L, Wei Y, Sun Y, Shi W, Yang J, Zhu L, Li M. Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes: a pivotal role of CD8+ cytotoxic T lymphocytes in vitiligo. Acta Derm Venereol. 2015;95(6):669–675. https://doi.org/10.2340/00015555-2080.

25. Tu CX, Gu JS, Lin XR. Increased interleukin-6 and granulocyte-macrophage colony stimulating factor levels in the sera of patients with non-segmental vitiligo. J Dermatol Sci. 2003;31(1):73–78. https://doi.org/10.1016/S0923-1811(02)00151-2.

26. Custurone P, Di Bartolomeo L, Irrera N, Borgia F, Altavilla D, Bitto A et al. Role of Cytokines in Vitiligo: Pathogenesis and Possible Targets for Old and New Treatments. Int J Mol Sci. 2021;22(21):11429. https://doi.org/10.3390/ijms222111429.

27. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75(2):163–189. https://doi.org/10.1189/jlb.0603252.

28. Sushama S, Dixit N, Gautam RK, Arora P, Khurana A, Anubhuti A. Cytokine profile (IL-2, IL-6, IL-17, IL-22, and TNF-α) in vitiligo-New insight into pathogenesis of disease. J Cosmet Dermatol. 2019;18(1):337–341. https://doi.org/10.1111/jocd.12517.

29. Dong J, An X, Zhong H, Wang Y, Shang J, Zhou J. Interleukin-22 participates in the inflammatory process of vitiligo. Oncotarget. 2017;8(65): 109161–109174. https://doi.org/10.18632/oncotarget.22644.

30. Zhou L, Shi YL, Li K, Hamzavi I, Gao TW, Huggins RH et al. Increased circulating Th17 cells and elevated serum levels of TGF-beta and IL-21 are correlated with human non-segmental vitiligo development. Pigment Cell Melanoma Res. 2015;28(3):324–329. https://doi.org/10.1111/pcmr.12355.

31. Vaccaro M, Cannavò SP, Imbesi S, Cristani M, Barbuzza O, Tigano V, Gangemi S. Increased serum levels of interleukin-23 circulating in patients with non-segmental generalized vitiligo. Int J Dermatol. 2015;54(6):672–674. https://doi.org/10.3390/ijms222111429.

32. Atwa MA, Ali SMM, Youssef N, Mahmoud Marie RE. Elevated serum level of interleukin-15 in vitiligo patients and its correlation with disease severity but not activity. J Cosmet Dermatol. 2021;20(8):2640–2644. https://doi.org/10.1111/jocd.13908.

33. Tokura Y, Phadungsaksawasdi P, Kurihara K, Fujiyama T, Honda T. Pathophysiology of Skin Resident Memory T Cells. Front Immunol. 2021;11:618897. https://doi.org/10.3389/fimmu.2020.618897.

34. Seneschal J, Boniface K, D’Arino A, Picardo M. An update on Vitiligo pathogenesis. Pigment Cell Melanoma Res. 2021;34(2):236–243. https://doi.org/10.1111/pcmr.12949.

35. Li P, Ma H, Han D, Mou K. Interleukin-33 affects cytokine production by keratinocytes in vitiligo. Clin Exp Dermatol. 2015;40(2):163–170. https://doi.org/10.1111/ced.12464.

36. Zhang L, Kang Y, Chen S, Wang L, Jiang M, Xiang L. Circulating CCL20: A potential biomarker for active vitiligo together with the number of Th1/17 cells. J Dermatol Sci. 2019;93(2):92–100. https://doi.org/10.1016/j.jdermsci.2018.12.005.

37. Méry-Bossard L, Bagny K, Chaby G, Khemis A, Maccari F, Marotte H et al. New-onset vitiligo and progression of pre-existing vitiligo during treatment with biological agents in chronic inflammatory diseases. J Eur Acad Dermatol Venereol. 2017;31(1):181–186. https://doi.org/10.3390/ijms222111429.


Review

For citations:


Petunina VV. Immunologic markers for vitiligo. Meditsinskiy sovet = Medical Council. 2024;(14):24-28. (In Russ.) https://doi.org/10.21518/ms2024-317

Views: 391


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)