Changes in skeletal muscle in diabetes mellitus
https://doi.org/10.21518/ms2024-376
Abstract
Diabetes mellitus is a group of metabolic (chemical processes) diseases characterized by chronic hyperglycemia. Globally, the number of patients with diabetes mellitus follows an upward trend with an annual increase. As the disease progresses, the frequency of the micro and macrovascular complications of diabetes gradually increases. In recent years, much attention has been paid to the effect of diabetes mellitus on the skeletal muscle status. Structural and functional abnormalities, and metabolic disorders in skeletal muscles that develop with ageing are also specifically attributed to patients with diabetes, but they manifest themselves at an earlier age. Chronic hyperglycemia can accelerate the ageing process and play a crucial role in the development of diabetic myopathy, which is characterized by decreased muscle mass, skeletal muscle weakness and atrophy, pain, impaired sensation and even quadriplegia in severe cases. A reduction in the rate of muscle protein synthesis and a rise in the rate of its degradation is a pathophysiological sign of diabetic muscle atrophy. Research into the molecular mechanisms of diabetic myopathy will aid the development of effective methods of prevention and treatment, however, the achievement and maintenance of glycaemic targets plays a critical role in ensuring health of skeletal muscles, which will make it possible to achieve the reduction in disability and improve the patients’ quality of life. Advanced glucometer models fitted with a range of additional functions allow for structured self-monitoring of blood glucose (SMBG), analysis of the obtained data and timely correction of therapy, active involvement of patients in the process of diabetes management, which will significantly increase the effectiveness of disease management and reduce the risk of complications in patients with diabetes.
About the Authors
O. A. ShatskayaRussian Federation
Olga А. Shatskaya, Cand. Sci. (Med.), Senior Researcher at the Department of Cardiology and Vascular Surgery
1, Dmitry Ulyanov St., Moscow, 1170
I. Z. Bondarenko
Russian Federation
Irina Z. Bondarenko, Dr. Sci. (Med.), Chief Researcher of the Department of Cardiology and Vascular Surge
1, Dmitry Ulyanov St., Moscow, 1170
S. S. Kushnarenko
Russian Federation
Svetlana S. Kushnarenko, Cand. Sci. (Med.), Senior Researcher at the Department of Cardiology and Vascular Surgery
1, Dmitry Ulyanov St., Moscow, 1170
References
1. Alabadi B, Civera M, De la Rosa A, Martinez-Hervas S, Gomez-Cabrera MC, Real JT. Low Muscle Mass Is Associated with Poorer Glycemic Control and Higher Oxidative Stress in Older Patients with Type 2 Diabetes. Nutrients. 2023;15(14):3167. https://doi.org/10.3390/nu15143167.
2. Bone AE, Hepgul N, Kon S, Maddocks M. Sarcopenia and frailty in chronic respiratory disease. Chron Respir Dis. 2017;14(1):85–99. https://doi.org/10.1177/1479972316679664.
3. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(4):16–31. https://doi.org/10.1093/ageing/afz046.
4. Cawthon PM, Manini T, Patel SM, Newman A, Travison T, Kiel DP et al. Putative cut‐points in sarcopenia components and incident adverse health outcomes: an SDOC analysis. J Am Geriatr Soc. 2020;68(7):1429–1437. https://doi.org/10.1097/01.mco.0000134362.76653.b2.
5. Дедов ИИ, Шестакова МВ, Майоров АЮ (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 11-й выпуск. Сахарный диабет. 2023;26(2S):1–158. https://doi.org/10.14341/DM20232S.
6. Monaco CMF, Perry CGR, Hawke TJ. Diabetic myopathy: current molecular understanding of this novel neuromuscular disorder. Curr Opin Neurol. 2017;30(5):545–552. https://doi.org/10.1097/WCO.0000000000000479.
7. Krause MP, Riddell MC, Hawke TJ. Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes. 2011;12(4):345–364. https://doi.org/10.1111/j.1399-5448.2010.00699.x.
8. Cree-Green M, Newcomer BR, Brown MS, Baumgartner AD, Bergman B, Drew B et al. Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance. Diabetes. 2015;64(2):383–392. https://doi.org/10.2337/db14-0765.
9. Monaco CMF, Hughes MC, Ramos SV, Varah NE, Lamberz C, Rahman FA et al. Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes. Diabetologia. 2018;61(6):1411–1423. https://doi.org/10.1007/s00125-018-4602-6.
10. Wierzbicka E, Swiercz A, Pludowski P, Jaworski M, Szalecki M. Skeletal status, body composition, and glycaemic control in adolescents with type 1 diabetes mellitus. J Diabetes Res. 2018;2018:8121634. https://doi.org/10.1155/2018/8121634.
11. Nambam B, Schatz D. Growth hormone and insulin-like growth factor-I axis in type 1 diabetes. Growth Horm IGF Res. 2018;38:49–52. https://doi.org/10.1016/j.ghir.2017.12.005.
12. Lukács A, Mayer K, Juhász E, Varga B, Fodor B, Barkai L. Reduced physical fitness in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2012;13(5):432–437. https://doi.org/10.1111/j.1399-5448.2012.00848.x.
13. Maratova K, Soucek O, Matyskova J, Hlavka Z, Petruzelkova L, Obermannova B et al. Muscle functions and bone strength are impaired in adolescents with type 1 diabetes. Bone. 2018;106:22–27. https://doi.org/10.1016/j.bone.2017.10.005.
14. Orlando G, Balducci S, Bazzucchi I, Pugliese G, Sacchetti M. The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability. Acta Diabetol. 2017;54(6):543–550. https://doi.org/10.1007/s00592-017-0979-9.
15. Andreassen CS, Jensen JM, Jakobsen J, Ulhøj BP, Andersen H. Striated muscle fiber size, composition, and capillary density in diabetes in relation to neuropathy and muscle strength. J Diabetes. 2014;6(5):462–471. https://doi.org/10.1111/1753-0407.12124.
16. Saltin B, Houston M, Nygaard E, Graham T, Wahren J. Muscle fiber characteristics in healthy men and patients with juvenile diabetes. Diabetes. 1979;28(Suppl. 1):93–99. https://doi.org/10.2337/diab.28.1.s93.
17. Wallberg-Henriksson H, Gunnarsson R, Henriksson J, Ostman J, Wahren J. Influence of physical training on formation of muscle capillaries in type I diabetes. Diabetes. 1984;33(9):851–857. https://doi.org/10.2337/diab.33.9.851.
18. Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95(2):513–521. https://doi.org/10.1210/jc.2009-1756.
19. Arslanian S, Heil BV, Kalhan SC. Hepatic insulin action in adolescents with insulin-dependent diabetes mellitus: relationship with long-term glycemic control. Metabolism. 1993;42(3):283–290. https://doi.org/10.1016/0026-0495(93)90075-y.
20. Cree-Green M, Stuppy JJ, Thurston J, Bergman BC, Coe GV, Baumgartner AD et al. Youth with type 1 diabetes have adipose, hepatic, and peripheral insulin resistance. J Clin Endocrinol Metab. 2018;103(10):3647–3657. https://doi.org/10.1210/jc.2018-00433.54.
21. Bergman BC, Howard D, Schauer IE, Maahs DM, Snell-Bergeon JK, Clement TW et al. The importance of palmitoleic acid to adipocyte insulin resistance and whole-body insulin sensitivity in type 1 diabetes. J Clin Endocrinol Metab. 2013;98(1):E40–50. https://doi.org/10.1210/jc.2012-2892.
22. Perseghin G, Lattuada G, Danna M, Sereni LP, Maffi P, De Cobelli F et al. Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type 1 diabetes. Am J Physiol Endocrinol Metab. 2003;285(6):E1174–1181. https://doi.org/10.1152/ajpendo.00279.2003.
23. Bernroider E, Brehm A, Krssak M, Anderwald C, Trajanoski Z, Cline G et al. The role of intramyocellular lipids during hypoglycemia in patients with intensively treated type 1 diabetes. J Clin Endocrinol Metab. 2005;90(10):5559–5565. https://doi.org/10.1210/jc.2004-1756.
24. Kacerovsky M, Brehm A, Chmelik M, Schmid AI, Szendroedi J, Kacerovsky-Bielesz G et al. Impaired insulin stimulation of muscular ATP production in patients with type 1 diabetes. J Intern Med. 2011;269(2):189–199. https://doi.org/10.1111/j.1365-2796.2010.02298.x.
25. Crowther GJ, Milstein JM, Jubrias SA, Kushmerick MJ, Gronka RK, Conley KE et al. Altered energetic properties in skeletal muscle of men with well-con trolled insulin-dependent (type 1) diabetes. Am J Physiol Endocrinol Metab. 2003;284(4):E655–662. https://doi.org/10.1152/ajpendo.00343.2002.
26. Kalyani RR, Tra Y, Yeh HC, Egan JM, Ferrucci L, Brancati FL. Quadriceps strength, quadriceps power, and gait speed in older U.S. adults with diabetes mellitus: Results from the National Health and Nutrition Examination Survey, 1999–2002. J Am Geriatr Soc. 2013;61(5):769–775. https://doi.org/10.1111/jgs.12204.
27. D’Souza MD, Al-Sajee D, Hawke TJ. Diabetic myopathy: Impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol. 2013;4:379. https://doi.org/10.3389/fphys.2013.00379.
28. Peterson JM, Bryner RW, Alway SE. Satellite cell proliferation is reduced in muscles of obese Zucker rats but restored with loading. Am J Physiol Cell Physiol. 2008;295(2):C521–C528. https://doi.org/10.1152/ajpcell.00073.2008.
29. Ritov VB, Menshikova EV, Azuma K, Wood R, Toledo FG, Goodpaster BH et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab. 2010;298(1):E49–E58. HTTPS://DOI.ORG/10.1152/ajpendo.00317.2009.
30. Tabara Y, Ikezoe T, Yamanaka M, Setoh K, Segawa H, Kawaguchi T et al. Advanced Glycation End Product Accumulation Is Associated with Low Skeletal Muscle Mass, Weak Muscle Strength, and Reduced Bone Density: The Nagahama Study. J Gerontol A Biol Sci Med Sci. 2019;74(9):1446–1453. https://doi.org/10.1093/gerona/gly233.
31. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(4):16–31. https://doi.org/10.1093/ageing/afy169.
32. Tan PL, Shavlakadze T, Grounds MD, Arthur PG. Differential Thiol Oxidation of the Signaling Proteins Akt, Pten or Pp2a Determines Whether Akt Phosphorylation is Enhanced or Inhibited by Oxidative Stress in C2c12 Myotubes Derived From Skeletal Muscle. Int J Biochem Cell Biol. 2015;62:72–79. https://doi.org/10.1016/j.biocel.2015.02.015.
33. Nikawa T, Ulla A, Sakakibara I. Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules. 2021;26(16):4887. https://doi.org/10.3390/molecules26164887.
34. Uciechowski P, Dempke WCM. Interleukin-6: A Masterplayer in the Cytokine Network. Oncology. 2020;98(3):131–137. https://doi.org/10.1159/000505099.
35. Halim M, Halim A. The Effects of Inflammation, Aging and Oxidative Stress on the Pathogenesis of Diabetes Mellitus (Type 2 Diabetes). Diabetes Metab Syndr. 2019;13(2):1165–1172. https://doi.org/10.1016/j.dsx.2019.01.040.
36. Forcina L, Miano C, Musarò A. The Physiopathologic Interplay Between Stem Cells and Tissue Niche in Muscle Regeneration and the Role of Il-6 on Muscle Homeostasis and Diseases. Cytokine Growth Factor Rev. 2018;41:1–9. https://doi.org/10.1016/j.cytogfr.2018.05.001.
37. Akbari M, Hassan-Zadeh V. Il-6 Signalling Pathways and the Development of Type 2 Diabetes. Inflammopharmacology. 2018;26(3):685–698. https://doi.org/10.1007/s10787-018-0458-0.
38. Lauterbach MA, Wunderlich FT. Macrophage Function in Obesity-Induced Inflammation and Insulin Resistance. Pflugers Arch. 2017;469(3–4):385–396. https://doi.org/10.1007/s00424-017-1955-5.
39. Akash MSH, Rehman K, Liaqat A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J Cell Biochem. 2018;119(1):105–110. https://doi.org/10.1002/jcb.26174.
40. Sun SC. The non-Canonical Nf-κb Pathway in Immunity and Inflammation. Nat Rev Immunol. 2017;17(9):545–558. https://doi.org/10.1038/nri.2017.52.
41. Mitchell JP, Carmody RJ. Nf-κb and the Transcriptional Control of Inflammation. Int Rev Cell Mol Biol. 2018;335:41–84. https://doi.org/10.1016/bs.ircmb.2017.07.007.
42. Тhoma A, Lightfoot AP. Nf-Kb and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. Adv Exp Med Biol. 2018;1088:267–279. https://doi.org/10.1007/978-981-13-1435-3-12.
43. Ma W, Zhang R, Huang Z, Zhang Q, Xie X, Yang X et al. Pqq Ameliorates Skeletal Muscle Atrophy, Mitophagy and Fiber Type Transition Induced by Denervation via Inhibition of the Inflammatory Signaling Pathways. Ann Trans Med. 2019;7(18):440. https://doi.org/10.21037/atm.2019.08.101.
44. Ma W, Xu T, Wang Y, Wu C, Wang L, Yang X et al. The Role of Inflammatory Factors in Skeletal Muscle Injury. Biotarget. 2018;2:7. https://doi.org/10.21037/biotarget.2018.04.01.
45. Polonsky WH, Fisher L, Schikman CH, Hinnen DA, Parkin CG, Jelsovsky Z et al. Structured Self-Monitoring of Blood Glucose Significantly Reduces A1C Levels in Poorly Controlled, Noninsulin-Treated Type 2 Diabetes. Results from the Structured Testing Program study. Diabetes Care. 2011;34(2):262–267. https://doi.org/10.2337/dc10-1732.
46. Otto E, Tannan V. Evaluation of the Utility of a Glycemic Pattern Identification System. J Diabetes Sci Technol. 2014;9(4):830–838. https://doi.org/10.1177/1932296814532210.
47. Jendrike N, Baumstark A, Kamecke U, Haug C, Freckmann G. ISO 15197: 2013 Evaluation of a Blood Glucose Monitoring System’s Measurement Accuracy. J Diabetes Sci Technol. 2017;11(6):1275–1276. https://doi.org/10.1177/1932296817727550.
48. Bailey T, Wallace JF, Pardo S, Warchal-Windham ME, Harrison B, Morin R, Christiansen M. Accuracy and User Performance Evaluation of a New, Wireless-enabled Blood Glucose Monitoring System That Links to a Smart Mobile Device. J Diabetes Sci Technol. 2017;11(4):736–743. https://doi.org/10.1177/1932296816680829.
Review
For citations:
Shatskaya OA, Bondarenko IZ, Kushnarenko SS. Changes in skeletal muscle in diabetes mellitus. Meditsinskiy sovet = Medical Council. 2024;(16):148-153. (In Russ.) https://doi.org/10.21518/ms2024-376