Preview

Meditsinskiy sovet = Medical Council

Advanced search

Application of liquid chromatography-mass spectrometry for the determination of semaglutide in human serum in clinical pharmacokinetic studies

https://doi.org/10.21518/ms2024-437

Abstract

Introduction. Semaglutide preparations are an important therapeutic option for patients suffering from type 2 diabetes mellitus and obesity due to their high efficacy and the expected increase in the prevalence of these diseases. Consequently, there is a growing need for the development of domestic analogs of semaglutide requiring bioequivalence studies. This study proposes the use of high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) as an alternative to the widely used immunoassay for the quantitative determination of semaglutide in human serum.

Aim. To develop and validate a method for the quantitative determination of semaglutide in human serum using HPLC-MS/MS.

Materials and methods. Serum sample preparation was based on protein precipitation using an acetonitrile-methanol mixture. Liraglutide was selected as the internal standard. The mobile phase consisted of 0.3% formic acid in water and acetonitrile. The stationary phase was represented by a Phenomenex Kinetex C18 chromatographic column 100×3.0 mm, 5 μm, 100 Å. Ionization of semaglutide and liraglutide was performed in positive electrospray mode. Detection was carried out in multiple reaction monitoring mode (MRM).

Results. The method demonstrated high accuracy and precision, with relative error and relative standard deviation values of less than 15% across all quality control levels. The confirmed analytical ranges of the method were 0.50–200.00 ng/mL and 1.00–800.00 ng/mL. Over 3.400 volunteer samples were analyzed as part of the studies. Compared to the ELISA method, the proposed method provides higher selectivity and reproducibility of measurements.

Conclusions. The method has been developed that provides reproducible quantitative determination of semaglutide in human blood serum. The method was validated in accordance with EAEU requirements and was successfully applied in bioequivalence studies of semaglutide GP40331 (GEROPHARM LLC, Russia). The method is suitable for conducting pharmacokinetic studies of other semaglutide preparations.

About the Authors

P. K. Karnakova
LLC “Center of Pharmaceutical Analytics”
Russian Federation

Polina K. Karnakova, Acting Senior Analytical Chemist at the Bioanalytical Research Laboratory of the Research Center

 8, Simferopolsky Boulevard, Moscow, 117149



Е. S. Vetrova
LLC “Center of Pharmaceutical Analytics”
Russian Federation

Evgeniya S. Vetrova, Analytical Chemist at the Bioanalytical Research Laboratory of the Research Center

 8, Simferopolsky Boulevard, Moscow, 117149



P. A. Karpova
LLC “Center of Pharmaceutical Analytics”
Russian Federation

Polina A. Karpova, Analytical Chemist at the Bioanalytical Research Laboratory of the Research Center

 8, Simferopolsky Boulevard, Moscow, 117149



A. E. Knyazeva
LLC “Center of Pharmaceutical Analytics”
Russian Federation

Alina E. Knyazeva, Junior Analytical Chemist at the Bioanalytical Research Laboratory of the Research Center

 8, Simferopolsky Boulevard, Moscow, 117149



O. A. Archakova
LLC “Center of Pharmaceutical Analytics”
Russian Federation

Olga A. Archakova, Head of the Bioanalytical Research Laboratory

 8, Simferopolsky Boulevard, Moscow, 117149



N. S. Bagaeva
LLC “Center of Pharmaceutical Analytics”
Russian Federation

Natalia S. Bagaeva, Head of the Biostatistics Department at the Research Center

 8, Simferopolsky Boulevard, Moscow, 117149



A. N. Arefeva
CJSC “Pharm Holding”
Russian Federation

Anna N. Arefeva, Medical Advisor

 34а, Svyazi St., Strelna Settlement, St Petersburg, 198515



V. V. Banko
CJSC “Pharm Holding”
Russian Federation

Veniamin V. Banko, Junior Medical Advisor

 34а, Svyazi St., Strelna Settlement, St Petersburg, 198515



I. E. Makarenko
CJSC “Pharm Holding”
Russian Federation

Igor E. Makarenko, Cand. Sci. (Med.), Head of the Medical Department

 34а, Svyazi St., Strelna Settlement, St Petersburg, 198515



T. N. Komarov
LLC “Center of Pharmaceutical Analytics”; St Petersburg State Chemical and Pharmaceutical University; Peoples’ Friendship University of Russia named after Patrice Lumumba
Russian Federation

Timofey N. Komarov, Cand. Sci. (Pharm.), Director of the Research Center, LLC “Center of Pharmaceutical Analytics”; Associate Professor at the Department of Pharmacology and Clinical Pharmacology, St Petersburg State Chemical and Pharmaceutical University; Head of the Department of Pharmaceutical Technologies of the Scientific and Educational Resource Centre “Pharmacy”, Peoples’ Friendship University of Russia named after Patrice Lumumba

8, Simferopolsky Boulevard, Moscow, 117149,

14а, Professor Popov St., St Petersburg, 197022,

6, Miklukho-Maklai St., Moscow, 117198



I. E. Shohin
LLC “Center of Pharmaceutical Analytics”
Russian Federation

Igor E. Shohin, Dr. Sci. (Pharm.), Chief Executive Officer, LLC “Center of Pharmaceutical Analytics

 8, Simferopolsky Boulevard, Moscow, 117149



References

1. Gregg E, Buckley J, Ali MK, Davies J, Flood D, Mehta R et al. Improving health outcomes of people with diabetes mellitus: global target setting to reduce the burden of diabetes mellitus by 2030. Lancet. 2023;401(10384):1302–1312. https://doi.org/10.1016/S0140-6736(23)00001-6.

2. Vikulova OK, Dedov II, Shestakova MV, Zheleznyakova AV, Isakov MA, Sazonova DV, Mokrysheva NG. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes Mellitus. 2023;26(2):104–123. (In Russ.) https://doi.org/10.14341/DM13035.

3. Dedov II, Shestakova MV, Galstyan GR. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study). Diabetes Mellitus. 2016;19(2):104–112. (In Russ.) https://doi.org/10.14341/DM2004116-17.

4. Дедов ИИ, Шестакова МВ, Майоров АЮ, Шамхалова МШ, Сухарева ОЮ, Галстян ГР и др. Сахарный диабет 2-го типа у взрослых: клинические рекомендации. М.; 2018. 228 с. Режим доступа: https://www.endocrincentr.ru/sites/default/files/specialists/science/clinic-recomendations/saharnyy_diabet_2_tipa_u_vzroslyh.pdf.

5. Shestakova MV, Shestakova EA, Sklyanik IA, Stafeev IuS. Obesity and diabetes – are they always together? Terapevticheskii Arkhiv. 2022;94(10):1131–1135. (In Russ.) https://doi.org/10.26442/00403660.2022.10.201880.

6. Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol. 2021;9(8):525–544. https://doi.org/10.1016/S2213-8587(21)00113-3.

7. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;74(10):e177–e232. https://doi.org/10.1016/jjacc.2019.03.010.

8. Shestakova MV, Shamkhalova MSh, Galsyan GR, Ruyankina LA, Suplotova LA. Oral semaglutide: the innovation in type 2 diabetes management. Diabetes Mellitus. 2021;24(3):273–281. (In Russ.) https://doi.org/10.14341/DM12790.

9. “Algorithms of specialized medical care for patients with diabetes mellitus” edited by I.I. Dedov, M.V. Shestakova, A.Yu. Mayorov. 9th edition. Diabetes Mellitus. 2019;22(1S1):1–144. (In Russ.) https://doi.org/10.14341/DM20191S1.

10. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D et al. Pharmacologic approaches to glycemic treatment: standards of care in diabetes – 2023. Diabetes Care. 2023;46(1 Suppl.):S140–S157. https://doi.org/10.2337/dc23-S009.

11. Kobalava ZhD, Kokhan EV. Semaglutide for the Management of type 2 Diabetes: Clinical Evidence, Cardioprotective Effects, and Guidelines. Kardiologiya. 2020;60(9):122–133. (In Russ.) https://doi.org/10.18087/cardio.2020.9.n1274.

12. Karpov YuA, Starostina EG. Semaglutide (Ozempic) from the point of view of endocrinologist and cardiologist: the possibilities of glucagon-like peptide-1 analogues are far from exhausted. Atmosphere. Cardiology News. 2019;(4):3–17. (In Russ.) Available at: https://atmosphere-ph.ru/modules/Magazines/articles/cardio/ac_4_2019_03.pdf.

13. Jain AB, Kanters S, Khurana R, Kissock J, Severin N, Stafford SG. Real-world effectiveness analysis of switching from liraglutide or dulaglutide to semaglutide in patients with type 2 diabetes mellitus: the retrospective REALISE-DM study. Diabetes Ther. 2021;12(2):527–536. https://doi.org/10.1007/s13300-020-00984-x.

14. Lau DC, Batterham RL, le Roux CW. Pharmacological profile of once-weekly injectable semaglutide for chronic weight management. Exp Rev Clin Pharmacol. 2022;15(3):251–268. https://doi.org/10.1080/17512433.2022.2070473.

15. Mahapatra MK, Karuppasamy M, Sahoo BM. Therapeutic potential of semaglutide, a newer GLP-1 receptor agonist, in abating obesity, non-alcoholic steatohepatitis and neurodegenerative diseases: A narrative review. Pharm Res. 2022;39(6):1233–1248. https://doi.org/10.1007/s11095-022-03302-1.

16. Wang ZJ, Li XR, Chai SF, Li WR, Li S, Hou M et al. Semaglutide ameliorates cognition and glucose metabolism dysfunction in the 3xTg mouse model of Alzheimer’s disease via the GLP-1R/SIRT1/GLUT4 pathway. Neuropharmacology. 2023;240:109716. https://doi.org/10.1016/j.neuropharm.2023.109716.

17. Atri A, Feldman HH, Hansen CT, Honore JB, Johannsen P, Knop FK et al. Evoke and evoke+: design of two large-scale, double-blind, placebocontrolled, phase 3 studies evaluating the neuroprotective effects of semaglutide in early Alzheimer’s disease. Alzheimer’s & Dementia. 2022;18:e062415. https://doi.org/10.1002/alz.062415.

18. Scheltens P, Atri A, Feldman H, Hansson O, Knop F, Sano M et al. Baseline Characteristics from Evoke and Evoke+: Two Phase 3 Randomized Placebocontrolled Trials of Oral Semaglutide in Patients with Early Alzheimer’s Disease (P11-9.013). Neurology. 2024;102(1):3350. https://doi.org/10.1212/WNL.0000000000205079.

19. Tzoulis P, Baldeweg SE. Semaglutide for weight loss: unanswered questions. Front Endocrinol. 2024;15:1382814. https://doi.org/10.3389/fendo.2024.1382814.

20. Ametov AS, Shokhin IE, Rogozhina EA, Bodrova TG, Nevretdinova ME, Bely PA et al. Comparative analysis of physicochemical properties, bioequivalence, safety and tolerability of the first domestic semaglutide. Farmatsiya i Farmakologiya. 2023;11(4):324–346. (In Russ.) https://doi.org/10.19163/2307-9266-2023-11-4-324-346.

21. Wang L, Ding J, Zhu C, Guo B, Yang W, He W et al. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole-kindled mice. Int J Mol Med. 2021;48(6):1–15. https://doi.org/10.3892/ijmm.2021.5052.

22. Schneider EL, Hangasky JA, Fernandez RDV, Ashley GW, Santi DV. The limitation of lipidation: conversion of semaglutide from once-weekly to once-monthly dosing. bioRxiv. 2024. https://doi.org/10.1101/2024.08.10.607458.

23. Arefeva AN, Banko VV, Sadovskikh МО, Noskov SМ. Pharmacokinetics of first semaglutide drug in Russian Federation: results of open-label randomized clinical trial. Meditsinskiy Sovet. 2023;17(16):77–82. (In Russ.) https://doi.org/10.21518/ms2023-312.

24. Oh HS, Choi M, Lee TS, An Y, Park EJ, Kim TH et al. Pharmacokinetics and brain distribution of the therapeutic peptide liraglutide by a novel LC–MS/ MS analysis. J Anal Sci Technol. 2023;14(1):19. https://doi.org/10.1186/s40543-023-00382-5.

25. Liu D, Gu J, Shao W, Pang J, Qian X, Jin T. Comparison of beneficial metabolic effects of liraglutide and semaglutide in male C57BL/6J mice. Can J Diabetes. 2022;46(3):216–224. https://doi.org/10.1016/j.jcjd.2021.08.012.

26. Petralli G, Raggi F, Zoppo AD, Rovera C, Salvati A, Brunetto MR, Solini A. Response to semaglutide of non-drinker subjects with type 2 diabetes. Diabetol Metab Syndr. 2024;16(1):103. https://doi.org/10.1186/s13098-024-01344-6.

27. Ametov AS, Shokhin IE, Rogozhina EA, Bodrova TG, Nevretdinova ME, Bely PA et al. Russian development for drug independence in endocrinology: comparative analysis of bioequivalence, safety and tolerability of the first domestic liraglutide. Farmatsiya i Farmakologiya. 2023;11(3):255–276. (In Russ.) https://doi.org/10.19163/2307-9266-2023-11-3-255-276.

28. Ahmed A, Zafar SB, Zafar SHA, Gondal A. Development of reverse phase ultra-high performance liquid chromatography for the identification of semaglutide. Pakistan J Sci. 2024;76(2):328–334. https://doi.org/10.57041/pjs.v76i02.1162.

29. Vollmer AC, Wagmann L, Weber AA, Meyer MR. Simultaneous analysis of antihyperglycemic small molecule drugs and peptide drugs by means of dual liquid chromatography high-resolution mass spectrometry. Clin Chem Lab Med. 2023;61(7):1300–1308. https://doi.org/10.1515/cclm2022-1316.

30. Pinho AR, Fortuna A, Falcão A, Santos AC, Seiça R, Estevens C et al. Comparison of ELISA and HPLC-MS methods for the determination of exenatide in biological and biotechnology-based formulation matrices. J Pharm Аnal. 2019;9(3):143–155. https://doi.org/10.1016/j.jpha.2019.02.001.

31. John H, Walden M, Schäfer S, Genz S, Forssmann WG. Analytical procedures for quantification of peptides in pharmaceutical research by liquid chromatography–mass spectrometry. Anal Bioanal Chem. 2004;378(4):883–897. https://doi.org/10.1007/s00216-003-2298-y.

32. Lee TS, Park EJ, Choi M, Oh HS, An Y, Kim T et al. Novel LC-MS/MS analysis of the GLP-1 analog semaglutide with its application to pharmacokinetics and brain distribution studies in rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2023;1221:123688. https://doi.org/10.1016/j.jchromb.2023.123688.

33. Dong S, Gu Y, Wei G, Si D, Liu C. Determination of liraglutide in rat plasma by a selective liquid chromatography-tandem mass spectrometry method: Application to a pharmacokinetics study. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1091:29–35. https://doi.org/10.1016/j.jchromb.2018.05.020.

34. Arbouche N, Blanchot A, Raul JS, Kintz P. Semaglutide and health risk: Development and validation of a LC-HRMS method for testing semaglutide in whole blood and application to real cases. J Chromatogr B Analyt Technol Biomed Life Sci. 2024;1242:124187. https://doi.org/10.1016/j.jchromb.2024.124187.

35. Noskov SM, Arefeva AN, Banko VV, Radaeva KS, Gefen ML, Archakova OA et al. Semaglutide for the treatment of obesity: results of two open randomized pharmacokinetic studies. Meditsinskiy Sovet. 2024;18(16):8–14. (In Russ.) https://doi.org/10.21518/ms2024-346.


Review

For citations:


Karnakova PK, Vetrova ЕS, Karpova PA, Knyazeva AE, Archakova OA, Bagaeva NS, Arefeva AN, Banko VV, Makarenko IE, Komarov TN, Shohin IE. Application of liquid chromatography-mass spectrometry for the determination of semaglutide in human serum in clinical pharmacokinetic studies. Meditsinskiy sovet = Medical Council. 2024;(16):246-255. (In Russ.) https://doi.org/10.21518/ms2024-437

Views: 560


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)