Modern views on pathogenesis of cognitive impairment in patients with type 2 diabetes mellitus
https://doi.org/10.21518/ms2024-411
Abstract
Currently, the features of the pathogenesis of cognitive impairment in patients with diabetes mellitus are being actively studied. The study of the mutual influence of these pathologies is of particular relevant not only in connection with a decrease in cognitive functions in patients with diabetes mellitus, but also due to the fact that the management of diabetes mellitus requires a thorough approach to the implementation of doctor’s recommendations and self-control on the part of the patient himself. The degree of cognitive impairment has a direct impact on patient compliance and, consequently, on the management and control of the disease. A comprehensive strategy is necessary for the prevention and progression of cognitive impairments in patients with diabetes mellitus. This strategy should include minimizing modifiable risk factors, controlling comorbidities, maintaining a healthy lifestyle, following a diet, engaging in regular physical activity, and medication therapy. Also, one of the key aspects is the control of blood glucose levels. Regular monitoring and maintaining a stable level of sugar can significantly reduce the risk of developing cognitive impairments in diabetic patients. This review also analyzes the effects of oral hypoglycemic drugs, incretin-based therapy and insulin on the risk of developing cognitive impairments. This review examines important aspects of the role of pathogenetic links and clinical manifestations of type 2 diabetes mellitus in the development of cognitive impairment and the possibility of influencing their development and rate of progression. Understanding these relationships will help develop effective strategies for the prevention and treatment of cognitive impairments in patients with diabetes mellitus.
About the Authors
T. Yu. DemidovaRussian Federation
Tatiana Yu. Demidova, Dr. Sci. (Med.), Professor, Head of Department of Endocrinology, Faculty of General Medicine
1, Ostrovityanov St., Moscow, 117997
A. S. Teplova
Russian Federation
Anna S. Teplova, Assistant of Department of Endocrinology, Faculty of General Medicine
1, Ostrovityanov St., Moscow, 117997
V. O. Yarmanova
Russian Federation
Violetta O. Yarmanova, Student of Faculty of General Medicine
1, Ostrovityanov St., Moscow, 117997
References
1. Kurbanova MM, Galayeva AA, Stefanovskaya YV, Suvorkina AA, Alikhanov NM. Modern methods for the diagnosis of cognitive impairment. Russian Family Doctor. 2020;24(1):35–44. (In Russ.) https://doi.org/10.17816/RFD18986.
2. Strokov IA, Zakharov VV, Strokov KI. Diabetic encephalopathy. Neurology, Neuropsychiatry, Psychosomatics. 2012;4(2 Suppl.):30–40. (In Russ.) https://doi.org/10.14412/2074-2711-2012-2506.
3. Ткачева ОН, Яхно НН, Незнанов НГ, Левин ОС, Гусев ЕИ, Мартынов МЮ и др. Когнитивные расстройства у лиц пожилого и старческого возраста: клинические рекомендации. 2020. Режим доступа: https://psyrus.ru/med_psy/klinicheskie-rekomendatsii/kognitivnie_rasstroistva_pogilie_1204202.pdf.
4. Sebastian MJ, Khan SK, Pappachan JM, Jeeyavudeen MS. Diabetes and cognitive function: An evidence-based current perspective. World J Diabetes 2023;14(2):92–109. https://doi.org/10.4239/wjd.v14.i2.92.
5. Annweiler C, Duval GT, Cheng C-Y, Wong T-Y, Lamoureux EL, Milea D, Sabanayagam C. U-Shaped Relationship between Serum Leptin Concentration and Cognitive Performance in Older Asian Adults. Nutrients. 2019;11(3):660. https://doi.org/10.3390/nu11030660.
6. Johnston JM, Hu WT, Fardo DW, Greco SJ, Perry G, Montine TJ et al.; Alzheimer’s Disease Neuroimaging Initiative. Low plasma leptin in cognitively impaired ADNI subjects: gender differences and diagnostic and therapeutic potential. Curr Alzheimer Res. 2014;11(2):165–174. https://doi.org/10.2174/1567205010666131212114156.
7. Oania R, McEvoy LK. Plasma leptin levels are not predictive of dementia in patients with mild cognitive impairment. Age Ageing. 2015;44(1):53–58. https://doi.org/10.1093/ageing/afu160.
8. Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020;19(9):758–766. https://doi.org/10.1016/S1474-4422(20)30231-3.
9. Ab-Hamid N, Omar N, Ismail CAN, Long I. Diabetes and cognitive decline: Challenges and future direction. World J Diabetes. 2023;14(6):795–807. https://doi.org/10.4239/wjd.v14.i6.795.
10. Tack RWP, Amboni C, van Nuijs D, Pekna M, Vergouwen MDI, Rinkel GJE, Hol EM. Inflammation, Anti-inflammatory Interventions, and Post-stroke Cognitive Impairment: a Systematic Review and Meta-analysis of Human and Animal Studies. Transl Stroke Res. 2023. https://doi.org/10.1007/s12975-023-01218-5.
11. Ehtewish H, Arredouani A, El-Agnaf O. Diagnostic, Prognostic, and Mechanistic Biomarkers of Diabetes Mellitus-Associated Cognitive Decline. Int J Mol Sci. 2022;23(11):6144. https://doi.org/10.3390/ijms23116144.
12. Kim WJ, Lee SJ, Lee E, Lee EY, Han K. Risk of Incident Dementia According to Glycemic Status and Comorbidities of Hyperglycemia: A Nationwide Population-Based Cohort Study. Diabetes Care. 2022;45(1):134–141. https://doi.org/10.2337/dc21-0957.
13. Verhulst CEM, Fabricius TW, Nefs G, Kessels RPC, Pouwer F, Teerenstra S et al. Consistent Effects of Hypoglycemia on Cognitive Function in People With or Without Diabetes. Diabetes Care. 2022;45(9):2103–2110. https://doi.org/10.2337/dc21-2502.
14. Mu Z, Sun M, Wen L, Li P, Gao J, Liu M et al. Effect of hypoglycemia on cognitive performance in older patients with diabetes: A meta-analysis. Ann Endocrinol. 2024;85(1):56–62. https://doi.org/10.1016/j.ando.2023.10.006.
15. Cui X, Abduljalil A, Manor BD, Peng CK, Novak V. Multi-scale glycemic variability: a link to gray matter atrophy and cognitive decline in type 2 diabetes. PLoS ONE. 2014;9(1):e86284. https://doi.org/10.1371/journal.pone.0086284.
16. Li ZH, Jiang YY, Long CY, Peng Q, Yue RS. The gut microbiota-astrocyte axis: Implications for type 2 diabetic cognitive dysfunction. CNS Neurosci Ther. 2023;29(Suppl. 1):59–73. https://doi.org/10.1111/cns.14077.
17. Guzzardi MA, La Rosa F, Iozzo P. Trust the gut: Outcomes of gut microbiota transplant in metabolic and cognitive disorders. Neurosci Biobehav Rev. 2023;149:105143. https://doi.org/10.1016/j.neubiorev.2023.105143.
18. Carranza-Naval MJ, Vargas-Soria M, Hierro-Bujalance C, Baena-Nieto G, Garcia-Alloza M, Infante-Garcia C, Del Marco A. Alzheimer’s Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models. Biomolecules. 2021;11(2):262. https://doi.org/10.3390/biom11020262.
19. Pal K, Mukadam N, Petersen I, Cooper C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol. 2018;53(11):1149–1160. https://doi.org/10.1007/s00127-018-1581-3.
20. Dedov II, Shestakova MV, Mayorov AYu, Mokrysheva NG, Andreeva EN, Bezlepkina OB et al. Standards of Specialized Diabetes Care. 11th ed. Diabetes Mellitus. 2023;26(2 Suppl.):1–157. (In Russ.) https://doi.org/10.14341/DM13042.
21. Yen FS, Wang SI, Lin SY, Chao YH, Wei JC. The Impact of Alcohol Consumption on Cognitive Impairment in Patients With Diabetes, Hypertension, or Chronic Kidney Disease. Front Med. 2022;9:861145. https://doi.org/10.3389/fmed.2022.861145.
22. Restifo D, Zhao C, Kamel H, Iadecola C, Parikh NS. Impact of Cigarette Smoking and Its Interaction with Hypertension and Diabetes on Cognitive Function in Older Americans. J Alzheimers Dis. 2022;90(4):1705–1712. https://doi.org/10.3233/JAD-220647.
23. Ma F, Wu T, Miao R, Xiao YY, Zhang W, Huang G. Conversion of mild cognitive impairment to dementia among subjects with diabetes: a population-based study of incidence and risk factors with five years of follow-up. J Alzheimers Dis. 2015;43(4):1441–1449. https://doi.org/10.3233/JAD-141566.
24. Sebastian MJ, Khan SK, Pappachan JM, Jeeyavudeen MS. Diabetes and cognitive function: An evidence-based current perspective. World J Diabetes 2023;14(2):92–109. https://doi.org/10.4239/wjd.v14.i2.92.
25. Puri S, Shaheen M, Grover B. Nutrition and cognitive health: A life course approach. Front Public Health. 2023;11:1023907. https://doi.org/10.3389/fpubh.2023.1023907.
26. Azevedo CV, Hashiguchi D, Campos HC, Figueiredo EV, Otaviano SFSD, Penitente AR et al. The effects of resistance exercise on cognitive function, amyloidogenesis, and neuroinflammation in Alzheimer’s disease. Front Neurosci. 2023;17:1131214. https://doi.org/10.3389/fnins.2023.1131214.
27. Lin Y, Gong Z, Ma C, Wang Z, Wang K. Relationship between glycemic control and cognitive impairment: A systematic review and meta-analysis. Front Aging Neurosci. 2023;15:1126183. https://doi.org/10.3389/fnagi.2023.1126183.
28. Cukierman-Yaffe T, Anderson C, Teo K, Gao P, Gerstein HC, Yusuf S; ONTARGET/ TRANSCEND Investigators. Dysglycemia and Cognitive Dysfunction and Ill Health in People With High CV Risk: Results From the ONTARGET/TRANSCEND Studies. J Clin Endocrinol Metab. 2015;100(7):2682–2689. https://doi.org/10.1210/jc.2015-1367.
29. Zhang JH, Zhang XY, Sun YQ, Lv RH, Chen M, Li M. Metformin use is associated with a reduced risk of cognitive impairment in adults with diabetes mellitus: A systematic review and meta-analysis. Front Neurosci. 2022;16:984559. https://doi.org/10.3389/fnins.2022.984559.
30. Rosell-Díaz M, Fernández-Real JM. Metformin, Cognitive Function, and Changes in the Gut Microbiome. Endocr Rev. 2024;45(2):210–226. https://doi.org/10.1210/endrev/bnad029.
31. Zhao H, Zhuo L, Sun Y, Shen P, Lin H, Zhan S. Thiazolidinedione use is associated with reduced risk of dementia in patients with type 2 diabetes mellitus: A retrospective cohort study. J Diabetes. 2023;15(2):97–109. https://doi.org/10.1111/1753-0407.13352.
32. Seaquist ER, Miller ME, Fonseca V, Ismail-Beigi F, Launer LJ, Punthakee Z, Sood A. Effect of thiazolidinediones and insulin on cognitive outcomes in ACCORD-MIND. J Diabetes Complications. 2013;27(5):485–491. https://doi.org/10.1016/j.jdiacomp.2013.03.005.
33. Wu CY, Iskander C, Wang C, Xiong LY, Shah BR, Edwards JD et al. Association of sulfonylureas with the risk of dementia: A population-based cohort study. J Am Geriatr Soc. 2023;71(10):3059–3070. https://doi.org/10.1111/jgs.18397
34. Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis. 2011;24(3):485–493. https://doi.org/10.3233/JAD-2011-101524.
35. Rizzo MR, Di Meo I, Polito R, Auriemma MC, Gambardella A, di Mauro G et al. Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment. Pharmacol Res. 2022;176:106062. https://doi.org/10.1016/j.phrs.2022.106062.
36. Groeneveld ON, Kappelle LJ, Biessels GJ. Potentials of incretin-based therapies in dementia and stroke in type 2 diabetes mellitus. J Diabetes Investig. 2016;7(1):5–16. https://doi.org/10.1111/jdi.12420.
37. Yuan Y, Zhang Y, Lei M, Guo X, Yang X, Ouyang C et al. Effects of DPP4 Inhibitors as Neuroprotective Drug on Cognitive Impairment in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis and Systematic Review. Int J Endocrinol. 2024;2024:9294113. https://doi.org/10.1155/2024/9294113.
38. Zhang M, Wu Y, Gao R, Chen X, Chen R, Chen Z. Glucagon-like peptide-1 analogs mitigate neuroinflammation in Alzheimer’s disease by suppressing NLRP2 activation in astrocytes. Mol Cell Endocrinol. 2022;542:111529. https://doi.org/10.1016/j.mce.2021.111529.
39. Strain WD, Frenkel O, James MA, Leiter LA, Rasmussen S, Rothwell PM et al. Effects of Semaglutide on Stroke Subtypes in Type 2 Diabetes: Post Hoc Analysis of the Randomized SUSTAIN 6 and PIONEER 6. Stroke. 2022;53(9):2749–2757. https://doi.org/10.1161/STROKEAHA.121.037775.
40. Wang L, Ding J, Zhu C, Guo B, Yang W, He W et al. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole-kindled mice. Int J Mol Med. 2021;48(6):219. https://doi.org/10.3892/ijmm.2021.5052.
41. Zhang JH, Zhang XY, Sun YQ, Lv RH, Chen M, Li M. Metformin use is associated with a reduced risk of cognitive impairment in adults with diabetes mellitus: A systematic review and meta-analysis. Front Neurosci. 2022;16:984559. https://doi.org/10.3389/fnins.2022.984559.
42. Craft S, Raman R, Chow TW, Rafii MS, Sun CK, Rissman RA et al. Safety, Efficacy, and Feasibility of Intranasal Insulin for the Treatment of Mild Cognitive Impairment and Alzheimer Disease Dementia: A Randomized Clinical Trial. JAMA Neurol. 2020;77(9):1099–1109. https://doi.org/10.1001/jamaneurol.2020.1840.
Review
For citations:
Demidova TY, Teplova AS, Yarmanova VO. Modern views on pathogenesis of cognitive impairment in patients with type 2 diabetes mellitus. Meditsinskiy sovet = Medical Council. 2024;(16):265-273. (In Russ.) https://doi.org/10.21518/ms2024-411