Preview

Meditsinskiy sovet = Medical Council

Advanced search

Cardiovascular profile drugs and the state of periodontal tissues

https://doi.org/10.21518/ms2024-369

Abstract

People with CVD, mostly over 50 years of age, regularly take medications such as beta-blockers (BBs), angiotensin-converting enzyme inhibitors (ACEIs), calcium channel blockers (CCBs), angiotensin II receptor blockers (ARBs), statins and acetylsalicylic acid (ASA). Periodontal tissue disease (PTD) occurs in the age group 35–44 years in 60% of cases, in the group of people 65–74 years – about 70%, that is, in that period of life when cardiovascular disease (CVD) begins to develop and progress. Some cardioprotective drugs, such as antihypertensives, cause xerostomia. Medication-induced xerostomia is one of the common causes of oral health problems in older adults who are on long-term drug therapy. Xerostomia is a common debilitating condition that causes problems such as dysphagia, loss of taste, and oral pain, as well as increasing the risk of tooth decay and oral infections. Drug-induced gingival overgrowth is an abnormal hypertrophy of the gingiva that can be caused by a number of medications, including calcium channel blockers. Drug-induced gingival overgrowth is characterized by the accumulation of connective tissue that primarily affects the anterior regions of the upper and lower jaw, and also causes problems with oral hygiene, which leads to susceptibility to infections and periodontal disease and can lead to tooth loss. Anticoagulants used in CVD due to the risk of bleeding require special approaches in the prevention and therapy of periodontal tissue disease. The possibilities of using statins in PTD due to their pleiotropic properties, independent of hypolipidemic action. The review article is devoted to the influence of drugs of cardiovascular profile on the state of periodontal tissues and mechanisms of development of side effects, as well as the possibilities of using statins taking into account their pleiotropic effects.

About the Authors

A. I. Sabirova
Kyrgyz Russian Slavic University named after the First President of Russia B.N. Eltsin
Russian Federation

Aziza I. Sabirova, Cand. Sci. (Med.), Associate Professor, Department of Operative Dentistry

44, Kievskaya St., Bishkek, 720000



O. O. Karshina
Kyrgyz Russian Slavic University named after the First President of Russia B.N. Eltsin
Russian Federation

Olesya O. Karshina, Senior Lecturer, Department of Therapy No. 2, Specialty “General Medicine”

44, Kievskaya St., Bishkek, 720000



I. S. Sabirov
Kyrgyz Russian Slavic University named after the First President of Russia B.N. Eltsin
Russian Federation

Ibragim S. Sabirov, Dr. Sci. (Med.), Professor, Head Department of Therapy No. 2, Specialty “General Medicine”

44, Kievskaya St., Bishkek, 720000

 



References

1. Bascones-Martinez A, Munoz-Corcuera M, Bascones-Ilundain C. Side effects of drugs on the oral cavity. Medicina Clínica. 2015;144(3):126–131. https://doi.org/10.1016/j.medcli.2014.01.025.

2. Tan ECK, Lexomboon D, Sandborgh-Englund G, Haasum Y, Johnell K. Medications That Cause Dry Mouth As an Adverse Effect in Older People: A Systematic Review and Metaanalysis. J Am Geriatr Soc. 2018;66(1):76–84. https://doi.org/10.1111/jgs.15151.

3. Ouanounou A. Xerostomia in the Geriatric Patient: Causes, Oral Manifestations, and Treatment. Compend Contin Educ Dent. 2016;37(5):306–311. Available at: https://pubmed.ncbi.nlm.nih.gov/27213776.

4. Habbab K, Moles D, Porter S. Potential oral manifestations of cardiovascular drugs. Oral Dis. 2010;16:769–773. https://doi.org/10.1111/j.1601-0825.2010.01686.x.

5. Eltas A, Kartalcı S, Eltas S, Dündar S, Uslu M. An assessment of periodontal health in patients with schizophrenia and taking antipsychotic medication. Int J Dent Hyg. 2013;11(2):78–83. https://doi.org/10.1111/j.1601-5037.2012.00558.x.

6. Katz J, Michalek S. Effect of immune T cells derived from mucosal or systemic tissue on host responses to Porphyromonas gingivalis.Oral Microbiol. Immunol. 1998;13:73–80. https://doi.org/10.1111/j.1399-302X.1998.tb00716.x.

7. Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Tsutsui T et al. Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol. 2000;35(3):714–721. https://doi.org/10.1016/s0735-1097(99)00594-x.

8. Marques-Vidal P, Vollenweider P, Waeber G. Angiotensin receptor blockers are not associated with reduced inflammatory markers in the general population. J Hypertens. 2015;33:2173–2178. https://doi.org/10.1097/HJH.0000000000000683.

9. Ustaoğlu G, Erdal E, Karaş Z. Influence of different anti-hypertensive drugs on gingival overgrowth: A cross-sectional study in a Turkish population. Oral Dis. 2021;27(5):1313–1319. https://doi.org/10.1111/odi.13655.

10. Livada R, Shiloah J. Calcium channel blocker-induced gingival enlargement. J Hum Hypertens. 2014;28(1):10–14. https://doi.org/10.1038/jhh.2013.47.

11. Hatahira H, Abe J, Hane Y, Matsui T, Sasaoka S, Motooka Y et al. Drug-induced gingival hyperplasia: a retrospective study using spontaneous reporting system databases. J Pharm Health Care Sci. 2017;3:19. https://doi.org/10.1186/s40780-017-0088-5.

12. Somacarrera M, Hernández G, Acero J, Moskow B.S. Factors related to the incidence and severity of cyclosporin-induced gingival overgrowth in transplant patients. A longitudinal study. J Periodonto. l994;65(7):671–675. https://doi.org/10.1902/jop.1994.65.7.671.

13. Sabarudin M, Taib H. Drug-influenced Gingival Enlargement: Overview of the Clinical Features and Assessment Methods. J Dentists. 2019;7:1–7. https://doi.org/10.12974/2311-8695.2019.07.1.

14. Rapone B, Ferrara E, Santacroce L, Cesarano F, Arazzi M, Liberato LD et al. Periodontal Microbiological Status Influences the Occurrence of Cyclosporine-A and Tacrolimus-Induced Gingival Overgrowth. Antibiotics. 2019;8(3):124. https://doi.org/10.3390/antibiotics8030124.

15. Meisel P, Giebel J, Kunert-Keil C, Dazert P, Kroemer H, Kocher T. MDR1 gene polymorphisms and risk of gingival hyperplasia induced by calcium antagonists. Clin Pharmacol Ther. 2006;79(1):62–71. https://doi.org/10.1016/j.clpt.2005.09.008.

16. Dongari-Bagtzoglou A. Research, Science and Therapy Committee, American Academy of Periodontology. Drug-associated gingival enlargement. J Periodontol. 2004;75(10):1424–1431. https://doi.org/10.1902/jop.2004.75.10.1424.

17. Bajkovec L, Mrzljak A, Likic R, Alajbeg I. Drug-induced gingival overgrowth in cardiovascular patients. World J Cardiol. 2021;13(4):68–75. https://doi.org/10.4330/wjc.v13.i4.68.

18. Duncan M, Berman B. Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin-6. J Invest Dermatol. 1991;97(4):686–692. https://doi.org/10.1111/1523-1747.ep12483971.

19. Goriuc A, Foia L, Minea B, Luchian A, Surdu A, Toma V et al. Drug-induced gingival hyperplasia – experimental model. Rom J Morphol Embryol. 2017;58(4):1371–1376. Available at: https://pubmed.ncbi.nlm.nih.gov/29556630.

20. Deliliers G, Santoro F, Polli N, Bruno E, Fumagalli L, Risciotti E. Light and electron microscopic study of cyclosporin A-induced gingival hyperplasia. J Periodontol. 1986;57(12):771–775. https://doi.org/10.1902/jop.1986.57.12.771.

21. Ellis J, Seymour R, Taylor J, Thomason J. Prevalence of gingival overgrowth in transplant patients immunosuppressed with tacrolimus. J Clin Periodontol. 2004;31(2):126–131. https://doi.org/10.1111/j.0303-6979.2004.00459.x.

22. Lu HK, Tseng CC, Lee YH, Li CL, Wang LF. Flutamide inhibits nifedipine- and interleukin-1 beta-induced collagen overproduction in gingival fibroblasts. J Periodontal Res. 2010;45(4):451–457. https://doi.org/10.1111/j.1600-0765.2009.01255.x.

23. Lederman D, Lumerman H, Reuben S, Freedman P. Gingival hyperplasia associated with nifedipine therapy. Report of a case. Oral Surg Oral Med Oral Pathol. 1984;57(6):620–622. https://doi.org/10.1016/0030-4220(84)90283-4.

24. Marshall R, Bartold P. A clinical review of drug-induced gingival overgrowths. Aust Dent J. 1999;44(4):219–232. https://doi.org/10.1111/j.1834-7819.1999.tb00224.x.

25. Meisel P, Schwahn C, John U, Kroemer H, Kocher T. Calcium antagonists and deep gingival pockets in the population-based SHIP study. Br J Clin Pharmacol. 2005;60(5):552–559. https://doi.org/10.1111/j.1365-2125.2005.02485.x.

26. Ellis J, Seymour R, Steele J, Robertson P, Butler T, Thomason JM. Prevalence of gingival overgrowth induced by calcium channel blockers: a communitybased study. J Periodontol. 1999;70(1):63–67. https://doi.org/10.1902/jop.1999.70.1.63.

27. Fattore L, Stablein M, Bredfeldt G, Semla T, Moran M, Doherty-Greenberg JM. Gingival hyperplasia: a side effect of nifedipine and diltiazem. Spec Care Dentist. 1991;11(3):107–109. https://doi.org/10.1111/j.1754-4505.1991.tb00828.x.

28. Nery EB, Edson RG, Lee KK, Pruthi VK, Watson J. Prevalence of nifedipineinduced gingival hyperplasia. J Periodontol. 1995;66(7):572–578. https://doi.org/10.1902/jop.1995.66.7.572.

29. Andrew W, Evelyn W, Francis M, Mark J, Mark C. Pattern of Gingival Overgrowth among Patients on Antihypertensive Pharmacotherapy at a Nairobi Hospital in Kenya. Open J Stomato. 2014;4(4):169–173. https://doi.org/10.4236/ojst.2014.44025.

30. Pradhan S, Mishra P. Gingival enlargement in antihypertensive medication. JNMA. 2009;48(174):149–152. Available at: https://pubmed.ncbi.nlm.nih.gov/20387357.

31. Lucas R, Howell L, Wall B. Nifedipine-induced gingival hyperplasia. A histochemical and ultrastructural study. J Periodontol. 1985;56(4):211–215. https://doi.org/10.1902/jop.1985.56.4.211.

32. Trackman P, Kantarci A. Molecular and clinical aspects of drug-induced gingival overgrowth. J Dent Res. 2015;94(4):540–546. https://doi.org/10.1177/0022034515571265.

33. Mishra M, Khan Z, Mishra S. Gingival overgrowth and drug association: A review. Indian J Med Sci. 2011;65(2):73–82. https://doi.org/10.4103/0019-5359.103971.

34. Barak S, Engelberg I, Hiss J. Gingival hyperplasia caused by nifedipine. Histopathologic findings. J Periodontol. 1987;58(9):639–642. https://doi.org/10.1902/jop.1987.58.9.639.

35. Sucu M, Yuce M, Davutoglu V. Amlodipine-induced massive gingival hypertrophy. Can Fam Physician. 2011;57(4):436–437. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076474.

36. Lauritano D, Lucchese A, Di Stasio D, Della F, Cura F, Palmieri A, Carinci F. Molecular Aspects of Drug-Induced Gingival Overgrowth: An In Vitro Study on Amlodipine and Gingival Fibroblasts. Int J Mol Sci. 2019;20(8):2047. https://doi.org/10.3390/ijms20082047.

37. Lafzi A, Farahani R, Shoja M. Amlodipine-induced gingival hyperplasia. Med Oral Patol Oral Cir Bucal. 2006;11(6):E480–E482. Available at: https://pubmed.ncbi.nlm.nih.gov/17072250.

38. Gaur S, Agnihotri R. Is dental plaque the only etiological factor in Amlodipine induced gingival overgrowth? A systematic review of evidence. J Clin Exp Dent. 2018;10(6):e610-e619. https://doi.org/10.4317/jced.54715.

39. Nanda T, Singh B, Sharma P, Arora K. Cyclosporine A and amlodipine induced gingival overgrowth in a kidney transplant recipient: Case presentation with literature review. BMJ Case Report. 2019;12(5):e229587. https://doi.org/10.1136/bcr-2019-229587.

40. Miller C, Damm D. Incidence of verapamil-induced gingival hyperplasia in a dental population. J Periodontol. 1992;63(5):453–456. https://doi.org/10.1902/jop.1992.63.5.453.

41. Pernu H, Oikarinen K, Hietanen J, Knuuttila M. Verapamil-induced gingival overgrowth: A clinical, histologic, and biochemic approach. J Oral Pathol Med. 1989;18(7):422–425. https://doi.org/10.1111/j.1600-0714.1989.tb01576.x.

42. Fardal Ø, Lygre H. Management of periodontal disease in patients using calcium channel blockers – gingival overgrowth, prescribed medications, treatment responses and added treatment costs. J Clin Periodontol. 2015;42(7):640–646. https://doi.org/10.1111/jcpe.12426.

43. Gorokhovskaya G, Yun V. Antiplatelet therapy: a modern view and an integrated approach to the problem of atherothrombosis. breast cancer. RMJ. 2013;(34):1737. (In Russ.) Available at: www.rmj.ru/articles/khirurgiya/Antitrombocitarnaya_terapiya_sovremennoe_predstavlenie_i_kompleksnyy_podhod_k_probleme_aterotromboza/#ixzz7dAwgDDZF.

44. Doganay O, Atalay B, Karadag E, Aga U, Tugrul M. Bleeding frequency of patients taking ticagrelor, aspirin, clopidogrel, and dual antiplatelet therapy after tooth extraction and minor oral surgery. J Am Dent Assoc. 2018;149(2):132–138. https://doi.org/10.1016/j.adaj.2017.09.052.

45. Napenas J, Hong C, Brennan M, Furney S, Fox P, Lockhart P. The frequency of bleeding complications after invasive dental treatment in patients receiving single and dual antiplatelet therapy. J Am Dent Assoc. 2009;140(6):690–695. https://doi.org/10.14219/jada.archive.2009.025.

46. Shi Q, Xu J, Zhang T, Zhang B, Liu H. Post-operative Bleeding Risk in Dental Surgery for Patients on Oral Anticoagulant Therapy: A Meta-analysis of Observational Studies. Front Pharmacol. 2017;8:58. https://doi.org/10.3389/fphar.2017.00058.

47. Yang S, Shi Q, Liu J, Li J, Xu J. Should oral anticoagulant therapy be continued during dental extraction? A meta-analysis. BMC Oral Health. 2016;16(1):81. https://doi.org/10.1186/s12903-016-0278-9.

48. Biedermann J, Rademacher W, Hazendonk H, van Diermen D, Leebeek F, Rozema F, Kruip M. Predictors of oral cavity bleeding and clinical outcome after dental procedures in patients on vitamin K antagonists. A cohort study. Thromb Haemost. 2017;117(7):1432–1439. https://doi.org/10.1160/TH17-01-0040.

49. Madrid C, Sanz M. What influence do anticoagulants have on oral implant therapy? A systematic review. Clinical Oral Implants Research. 2019;20(4):96–106. https://doi.org/10.1111/j.1600-0501.2009.01770.x.

50. Kwak E, Nam S, Park K., Kim S., Huh J, Park W. Bleeding related to dental treatment in patients taking novel oral anticoagulants (NOACs): a retrospective study. Clin Oral Investig. 2019;23(1):477–484. https://doi.org/10.1007/s00784-018-2458-2.

51. Miclotte I, Vanhaverbeke M, Agbaje J, Legrand P, Vanassche T, Verhamme P, Politis C. Pragmatic approach to manage new oral anticoagulants in patients undergoing dental extractions: a prospective case-control study. Clinical Oral Investigations. 2017;21(7):2183–2188. https://doi.org/10.1007/s00784-016-2010-1.

52. Perry D, Noakes T, Helliwell P. British Dental Society. Guidelines for the management of patients on oral anticoagulants requiring dental surgery. British Dental Journal. 2007;203:389–393. https://doi.org/10.1038/bdj.2007.892.

53. Valgimigli M, Bueno H, Byrne R, Collet J, Costa F, Jeppsson A et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS. Eur J Cardiothorac Surg. 2018;53(1):34–78. https://doi.org/10.1093/ejcts/ezx334.

54. Steffel J, Verhamme P, Potpara T, Albaladejo P, Antz M, Desteghe L et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation: executive summary. Europace. 2018;20(8):1231–1242. https://doi.org/10.1093/europace/euy054.

55. Steffel J, Verhamme P, Potpara T, Albaladejo P, Antz M, Desteghe L et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018;39(16):1330–1393. https://doi.org/10.1093/eurheartj/ehy136.

56. Rosenberg D, Vega M, Chaparro A, Kernitsky J, Andrade C, ViolantD, NartJ. Association between the use of statins and periodontal status: a review. Clin Periodoncia Implantol Rehabil. 2019;12(1):36–42. https://doi.org/10.4067/S0719-01072019000100041.

57. Cicek A, Ilarslan Y, Erman B, Sarkarati B, Tezcan I, Karabulut E et al. Statins and IL-1β, IL-10, and MPO Levels in Gingival Crevicular Fluid: Preliminary Results. Inflammation. 2016;39:1547–1557. https://doi.org/10.1007/s10753-016-0390-7.

58. Bertl K, Steiner I, Pandis N, Buhlin K, Klinge B, Stavropoulos A. Statins in nonsurgical and surgical periodontal therapy. A systematic review and meta-analysis of preclinical in vivo trials. J Periodontal Res. 2018;53(3):267–287. https://doi.org/10.1111/jre.12514.

59. Muniz FWMG, Taminski K, Cavagni J, Celeste RK, Weidlich P, Rösing CK. The effect of statins on periodontal treatment-a systematic review with meta-analyses and meta-regression. Clin Oral Investig. 2018;22(2):671–687. https://doi.org/10.1007/s00784-018-2354-9.

60. Saver B, Hujoel P, Cunha-Cruz J, Maupome G. Are statins associated with decreased tooth loss in chronic periodontitis? J Clin Periodontol. 2007;34(3):214–219. https://doi.org/10.1111/j.1600-051X.2006.01046.x.

61. Saxlin T, Suominen-Taipale L, Knuuttila M, Alha P, Ylöstalo P. Dual effect of statin medication on the periodontium. J Clin Periodontol. 2009;36(12):997–1003. https://doi.org/10.1111/j.1600-051X.2009.01484.x.

62. Gómez-Fernández P. Estatinas y efectos beneficiosos. Medicina Clinica. 2005;125(15):578–579. https://doi.org/10.1157/13080660.

63. Paumelle R, Blanquart C, Briand O, Barbier O, Duhem C, Woerly G et al. Acute antiinflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the protein kinase C signaling pathway. Circ Res. 2006;98(3):361–369. https://doi.org/10.1161/01.RES.0000202706.70992.95.

64. Balli U, Keles GC, Cetinkaya BO, Mercan U, Ayas B, Erdogan D. Assessment of vascular endothelial growth factor and matrix metalloproteinase-9 in the periodontium of rats treated with atorvastatin. J Periodontol. 2014;85(1):178–187. https://doi.org/10.1902/jop.2013.130018.

65. Maeda T, Kawane T, Horiuchi N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology. 2003;144(2):681–692. https://doi.org/10.1210/en.2002-220682.

66. Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev. 2000;21(4):393–411. https://doi.org/10.1210/edrv.21.4.0403.

67. Liu C, Wu Z, Sun H. The effect of simvastatin on mRNA expression of transforming growth factor-beta1, bone morphogenetic protein-2 and vascular endothelial growth factor in tooth extraction socket. Int J Oral Sci. 2009;1(2):90–98. https://doi.org/10.4248/ijos.08011.

68. Bracht L, Caparroz-Assef SM, Magon T, Ritter A, Cuman R, Bersani-Amado C. Topical anti-inflammatory effect of hypocholesterolaemic drugs. J Pharm Pharmacol. 2011;63(7):971–975. https://doi.org/10.1111/j.2042-7158.2011.01302.x.

69. Pradeep A, Karvekar S, Nagpal K, Patnaik K, Guruprasad C, Kumaraswamy K. Efficacy of locally delivered 1.2% rosuvastatin gel to non-surgical treatment of patients with chronic periodontitis: a randomized, placebocontrolled clinical trial. J Periodontol. 2015;86(6):738–745. https://doi.org/10.1902/jop.2015.140631.


Review

For citations:


Sabirova AI, Karshina OO, Sabirov IS. Cardiovascular profile drugs and the state of periodontal tissues. Meditsinskiy sovet = Medical Council. 2024;(16):317-324. (In Russ.) https://doi.org/10.21518/ms2024-369

Views: 169


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)