Preview

Медицинский Совет

Расширенный поиск

Роль холина в физиологии репродукции

https://doi.org/10.21518/ms2024-366

Аннотация

Холин – незаменимое питательное вещество, однако потребление его беременными женщинами является недостаточным: только 7% из них потребляют адекватные количества холина. Несоответствие между потребностями в холине и его фактическим потреблением поднимает вопросы о необходимости добавок и их потенциальных преимуществах для беременных женщин. Диета будущей матери, богатая холином, в прегравидарном периоде обеспечивает фолликулогенез и лучшее качество ооцитов, изменяет фетальный эпигеном, оказывая противодействие геномным дефектам в период внутриутробного развития и снижая предрасположенность к метаболическим изменениям во взрослой жизни. Холин является источником метильных групп, и его потребление снижает риск дефектов нервной трубки плода в 7 раз, поэтому перспективным трендом в нутрициальной поддержке беременности и профилактике дефектов нервной трубки является прием фолатов и холина в сочетании с другими микронутриентами. Холин способствует росту, пролиферации и функционированию клеток плаценты, транспорту макронутриентов, оказывает противовоспалительное действие. Риск низкой массы тела плода при добавлении холина к обычному рациону питания матери снижается на 69%. Показана значительная связь между высокими уровнями холина у матери и снижением риска развития преэклампсии, преждевременных родов в 2 раза, значимое влияние на нервное развитие и психическое здоровье ребенка – улучшение нейрокогнитивных функций и снижение риска аутизма и синдрома дефицита внимания с гиперактивностью. Добавка холина в дозе 130 мг/сут в составе витаминноминерального комплекса Фемибион 1 достаточна для удовлетворения потребностей в этом нутриенте в период прегравидарной подготовки и в первом триместре беременности. Необходимость дотации холина в прегравидарном периоде и первом триместре беременности обусловлена влиянием на фолликулогенез и протекцию ооцитов, эпигенетическим программированием, эффективностью профилактики врожденных пороков развития плода, участием в метаболических и физиологических процессах в плаценте, снижением риска плацента-ассоциированных осложнений, влиянием на развитие нервной ткани и головного мозга плода и новорожденного.

Об авторе

Г. Б. Дикке
Академия медицинского образования имени Ф.И. Иноземцева
Россия

Дикке Галина Борисовна, д.м.н., профессор кафедры акушерства и гинекологии с курсом репродуктивной медицины

190013, Санкт-Петербург, Московский проспект, д. 22



Список литературы

1. Hoffman M. Majority of Top Health Risks Are Within Individual’s Control, Global Study Finds. Health Policy Watch. 2024. Available at: https://healthpolicy-watch.news/majority-of-top-health-risks-are-withinindividual-control-global-study-finds.

2. Faa G, Fanos V, Manchia M, Van Eyken P, Suri JS, Saba L. The fascinating theory of fetal programming of adult diseases: A review of the fundamentals of the Barker hypothesis. J Public Health Res. 2024;13(1). https://doi.org/10.1177/22799036241226817.

3. Korsmo HW, Jiang X, Caudill MA. Choline: Exploring the Growing Science on Its Benefits for Moms and Babies. Nutrients. 2019;11(8):1823. https://doi.org/10.3390/nu11081823.

4. Wilson С. Choline: The forgotten vital nutrient we’re not getting enough. NewScientist. 2019. Available at: https://www.newscientist.com/article/mg24432534-900-choline-the-forgotten-vital-nutrient-were-not-gettingenough-of/.

5. Dixit A, Jose GP, Shanbhag C, Tagad N, Kalia J. Metabolic Labeling-Based Chemoproteomics Establishes Choline Metabolites as Protein Function Modulators. ACS Chem Biol. 2022;17(8):2272–2283. https://doi.org/10.1021/acschembio.2c00400.

6. Blusztajn JK, Slack BE, Mellott TJ. Neuroprotective Actions of Dietary Choline. Nutrients. 2017;9(8):815. https://doi.org/10.3390/nu9080815.

7. Громова ОА, Торшин ИЮ, Гришина ТР, Демидов ВИ, Богачева ТЕ. Молекулярные и клинические аспекты действия цитидиндифосфохолина на когнитивные функции. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(5):88–97. https://doi.org/10.17116/jnevro202112105188.

8. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington (DC): National Academies Press (US); 1998. https://doi.org/10.17226/6015.

9. Vennemann FB, Ioannidou S, Valsta LM, Dumas C, Ocké MC, Mensink GB et al. Dietary intake and food sources of choline in European populations. Br J Nutr. 2015;114(12):2046–2055. https://doi.org/10.1017/S0007114515003700.

10. Dymek A, Oleksy Ł, Stolarczyk A, Bartosiewicz A. Choline-An Underappreciated Component of a Mother-to-Be’s Diet. Nutrients. 2024;16(11):1767. https://doi.org/10.3390/nu16111767.

11. Chan KA, Jazwiec PA, Gohir W, Petrik JJ, Sloboda DM. Maternal nutrient restriction impairs young adult offspring ovarian signaling resulting in reproductive dysfunction and follicle loss. Biol Reprod. 2018;98(5):664–682. https://doi.org/10.1093/biolre/ioy008.

12. Zhan X, Fletcher L, Dingle S, Baracuhy E, Wang B, Huber LA, Li J. Choline supplementation influences ovarian follicular development. Front Biosci (Landmark Ed). 2021;26(12):1525–1536. https://doi.org/10.52586/5046.

13. Kim K, Wactawski-Wende J, Michels KA, Schliep KC, Plowden TC, Chaljub EN, Mumford SL. Dietary minerals, reproductive hormone levels and sporadic anovulation: associations in healthy women with regular menstrual cycles. Br J Nutr. 2018;120(1):81–89. https://doi.org/10.1017/S0007114518000818.

14. Торшин ИЮ, Громова ОА, Тетруашвили НК, Коденцова ВМ, Галустян АН, Курицына НА и др. Метрический анализ соотношений коморбидности между невынашиванием, эндометриозом, нарушениями менструального цикла и микронутриентной обеспеченностью в скрининге женщин репродуктивного возраста. Акушерство и гинекология. 2019;(5):156–168. https://doi.org/10.18565/aig.2019.5.156-168.

15. Talevi R, Sudhakaran S, Barbato V, Merolla A, Braun S, Di Nardo M et al. Is oxygen availability a limiting factor for in vitro folliculogenesis? PLoS ONE. 2018;13(2):e0192501. https://doi.org/10.1371/journal.pone.0192501.

16. Brązert M, Kranc W, Chermuła B, Kowalska K, Jankowski M, Celichowski P et al. Human Ovarian Granulosa Cells Isolated during an IVF Procedure Exhibit Differential Expression of Genes Regulating Cell Division and Mitotic Spindle Formation. J Clin Med. 2019;8(12):2026. https://doi.org/10.3390/jcm8122026.

17. Du Y, Bagnjuk K, Lawson MS, Xu J, Mayerhofer A. Acetylcholine and necroptosis are players in follicular development in primates. Sci Rep. 2018;8(1):6166. https://doi.org/10.1038/s41598-018-24661-z.

18. Kosior MA, Esposito R, Cocchia N, Piscopo F, Longobardi V, Cacciola NA et al. Seasonal variations in the metabolomic profile of the ovarian follicle components in Italian Mediterranean Buffaloes. Theriogenology. 2023;202:42–50. https://doi.org/10.1016/j.theriogenology.2023.02.022.

19. Michels KA, Wactawski-Wende J, Mills JL, Schliep KC, Gaskins AJ, Yeung EH et al. Folate, homocysteine and the ovarian cycle among healthy regularly menstruating women. Hum Reprod. 2017;32(8):1743–1750. https://doi.org/10.1093/humrep/dex233.

20. Ridlo MR, Kim GA, Taweechaipaisankul A, Kim EH, Lee BC. Zinc supplementation alleviates endoplasmic reticulum stress during porcine oocyte in vitro maturation by upregulating zinc transporters. J Cell Physiol. 2021;236(4):2869–2880. https://doi.org/10.1002/jcp.30052.

21. Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci. 2022;9(8):439. https://doi.org/10.3390/vetsci9080439.

22. Toosinia S, Davoodian N, Arabi M, Kadivar A. Ameliorating Effect of Sodium Selenite on Developmental and Molecular Response of Bovine CumulusOocyte Complexes Matured in Vitro Under Heat Stress Condition. Biol Trace Elem Res. 2024;202(1):161–174. https://doi.org/10.1007/s12011-023-03678-0.

23. Aghayeva S, Sonmezer M, Şükür YE, Jafarzade A. The Role of Thyroid Hormones, Vitamins, and Microelements in Female Infertility. Rev Bras Ginecol Obstet. 2023;45(11):e683–e688. https://doi.org/10.1055/s-0043-1772478.

24. Zhou X, Wu X, Luo X, Shao J, Guo D, Deng B, Wu Z. Effect of Vitamin D Supplementation on In Vitro Fertilization Outcomes: A Trial Sequential Meta-Analysis of 5 Randomized Controlled Trials. Front Endocrinol (Lausanne). 2022;13:852428. https://doi.org/10.3389/fendo.2022.852428.

25. Максименко ЛВ. Эпигенетика как доказательная база влияния образа жизни на здоровье и болезни. Профилактическая медицина. 2019;22(2):115–120. https://doi.org/10.17116/profmed201922021115.

26. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23(15):5293–5300. https://doi.org/10.1128/MCB.23.15.5293-5300.2003.

27. Estrada-Cortés E, Ortiz W, Rabaglino MB, Block J, Rae O, Jannaman EA et al. Choline acts during preimplantation development of the bovine embryo to program postnatal growth and alter muscle DNA methylation. FASEB J. 2021;35(10):e21926. https://doi.org/10.1096/fj.202100991R.

28. Kwan STC, King JH, Grenier JK, Yan J, Jiang X, Roberson MS, Caudill MA. Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study. Nutrients. 2018;10(4):417. https://doi.org/10.3390/nu10040417.

29. King JH, Kwan STC, Yan J, Jiang X, Fomin VG, Levine SP et al. Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency. Nutrients. 2019;11(2):374. https://doi.org/10.3390/nu11020374.

30. Mehedint MG, Zeisel SH. Choline’s role in maintaining liver function: new evidence for epigenetic mechanisms. Curr Opin Clin Nutr Metab Care. 2013;16(3):339–345. https://doi.org/10.1097/MCO.0b013e3283600d46.

31. Bekdash RA. Choline and the Brain: An Epigenetic Perspective. Adv Neurobiol. 2016;12:381–399. https://doi.org/10.1007/978-3-319-28383-8_21.

32. Shaw GM, Finnell RH, Blom HJ, Carmichael SL, Vollset SE, Yang W, Ueland PM. Choline and risk of neural tube defects in a folate-fortified population. Epidemiology. 2009;20(5):714–719. https://doi.org/10.1097/EDE.0b013e3181ac9fe7.

33. Lang P, Hasselwander S, Li H, Xia N. Effects of different diets used in diet-induced obesity models on insulin resistance and vascular dysfunction in C57BL/6 mice. Sci Rep. 2019;9(1):19556. https://doi.org/10.1038/s41598-019-55987-x.

34. Carmichael SL, Witte JS, Shaw GM. Nutrient pathways and neural tube defects: a semi-Bayesian hierarchical analysis. Epidemiology. 2009;20(1):67–73. https://doi.org/10.1097/EDE.0b013e31818f6375.

35. Громова ОА, Торшин ИЮ, Тетруашвили НК. Новые подходы к нутрициальному сопровождению беременности: фокус на холин. Акушерство и гинекология: новости, мнения, обучение. 2023;11(4):60–75. https://doi.org/10.33029/2303-9698-2023-11-4-60-75.

36. Petersen JM, Smith-Webb RS, Shaw GM, Carmichael SL, Desrosiers TA, Nestoridi E et al. Periconceptional intakes of methyl donors and other micronutrients involved in one-carbon metabolism may further reduce the risk of neural tube defects in offspring: a United States populationbased case-control study of women meeting the folic acid recommendations. Am J Clin Nutr. 2023;118(3):720–728. https://doi.org/10.1016/j.ajcnut.2023.05.034.

37. Jaiswal A, Dewani D, Reddy LS, Patel A. Choline Supplementation in Pregnancy: Current Evidence and Implications. Cureus. 2023;15(11):e48538. https://doi.org/10.7759/cureus.48538.

38. Hoffman MC, Hunter SJ, D’Alessandro A, Christians U, Law AJ, Freedman R. Maternal Plasma Choline during Gestation and Small for Gestational Age Infants. Am J Perinatol. 2024;41(S 01):e939–e948. https://doi.org/10.1055/s-0042-1759775.

39. Kwan STC, King JH, Yan J, Jiang X, Wei E, Fomin VG et al. Maternal choline supplementation during murine pregnancy modulates placental markers of inflammation, apoptosis and vascularization in a fetal sex-dependent manner. Placenta. 2017;53:57–65. https://doi.org/10.1016/j.placenta.2017.03.019.

40. Cohen JM, Beddaoui M, Kramer MS, Platt RW, Basso O, Kahn SR. Maternal Antioxidant Levels in Pregnancy and Risk of Preeclampsia and Small for Gestational Age Birth: A Systematic Review and Meta-Analysis. PLoS ONE. 2015;10(8):e0135192. https://doi.org/10.1371/journal.pone.0135192.

41. Maugeri A, Barchitta M, Blanco I, Agodi A. Effects of Vitamin D Supplementation During Pregnancy on Birth Size: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2019;11(2):442. https://doi.org/10.3390/nu11020442.

42. Van Lee L, Crozier SR, Aris IM, Tint MT, Sadananthan SA, Michael N et al. Prospective associations of maternal choline status with offspring body composition in the first 5 years of life in two large mother-offspring cohorts: the Southampton Women’s Survey cohort and the Growing Up in Singapore Towards healthy Outcomes cohort. Int J Epidemiol. 2019;48(2):433–444. https://doi.org/10.1093/ije/dyy291.

43. Hodgetts VA, Morris RK, Francis A, Gardosi J, Ismail KM. Effectiveness of folic acid supplementation in pregnancy on reducing the risk of small-for-gestational age neonates: a population study, systematic review and meta-analysis. BJOG. 2015;122(4):478–490. https://doi.org/10.1111/1471-0528.13202.

44. Ren X, Vilhjálmsdóttir BL, Rohde JF, Walker KC, Runstedt SE, Lauritzen L et al. Systematic Literature Review and Meta-Analysis of the Relationship Between Polyunsaturated and Trans Fatty Acids During Pregnancy and Offspring Weight Development. Front Nutr. 2021;8:625596. https://doi.org/10.3389/fnut.2021.625596.

45. Klatt KC, McDougall MQ, Malysheva OV, Taesuwan S, Loinard-González AAP, Nevins JEH et al. Prenatal choline supplementation improves biomarkers of maternal docosahexaenoic acid (DHA) status among pregnant participants consuming supplemental DHA: a randomized controlled trial. Am J Clin Nutr. 2022;116(3):820–832. https://doi.org/10.1093/ajcn/nqac147.

46. King JH, Kwan STC, Bae S, Klatt KC, Yan J, Malysheva OV et al. Maternal choline supplementation alters vitamin B-12 status in human and murine pregnancy. J Nutr Biochem. 2019;72:108210. https://doi.org/10.1016/j.jnutbio.2019.07.001.

47. Ma S, Bo Y, Zhao X, Cao Y, Duan D, Dou W et al. One-carbon metabolism-related nutrients intake is associated with lower risk of preeclampsia in pregnant women: a matched case-control study. Nutr Res. 2022;107:218–227. https://doi.org/10.1016/j.nutres.2022.10.004.

48. Zhu J, Liu YH, He XL, Kohlmeier M, Zhou LL, Shen LW et al. Dietary Choline Intake during Pregnancy and PEMT rs7946 Polymorphism on Risk of Preterm Birth: A Case-Control Study. Ann Nutr Metab. 2020;76(6):431–440. https://doi.org/10.1159/000507472.

49. Nanobashvili K, Jack-Roberts C, Bretter R, Jones N, Axen K, Saxena A et al. Maternal Choline and Betaine Supplementation Modifies the Placental Response to Hyperglycemia in Mice and Human Trophoblasts. Nutrients. 2018;10(10):1507. https://doi.org/10.3390/nu10101507.

50. Nguyen HT, Oktayani PPI, Lee SD, Huang LC. Choline in pregnant women: a systematic review and meta-analysis. Nutr Rev. 2024:nuae026. https://doi.org/10.1093/nutrit/nuae026.

51. Martin CR, Preedy VR, Rajendram R (eds.). Factors Affecting Neurodevelopment, Genetics, Neurology, Behavior, and Diet. Academic Press; 2021. 684 p. https://doi.org/10.1016/C2018-0-02211-2.

52. Mudd AT, Getty CM, Dilger RN. Maternal Dietary Choline Status Influences Brain Gray and White Matter Development in Young Pigs. Curr Dev Nutr. 2018;2(6):nzy015. https://doi.org/10.1093/cdn/nzy015.

53. Strain JJ, Bonham MP, Duffy EM, Wallace JMW, Robson PJ, Clarkson TW, Shamlaye C. Nutrition and neurodevelopment: the search for candidate nutrients in the Seychelles Child Development Nutrition Study. Neurotoxicology. 2020;81:300–306. https://doi.org/10.1016/j.neuro.2020.09.021.

54. Christifano DN, Chollet-Hinton L, Hoyer D, Schmidt A, Gustafson KM. Intake of eggs, choline, lutein, zeaxanthin, and DHA during pregnancy and their relationship to fetal neurodevelopment. Nutr Neurosci. 2023;26(8):749–755. https://doi.org/10.1080/1028415X.2022.2088944.

55. Trujillo-Gonzalez I, Friday WB, Munson CA, Bachleda A, Weiss ER, Alam NM et al. Low availability of choline in utero disrupts development and function of the retina. FASEB J. 2019;33(8):9194–9209. https://doi.org/10.1096/fj.201900444R.

56. Derbyshire E, Obeid R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients. 2020;12(6):1731. https://doi.org/10.3390/nu12061731.

57. Obeid R, Derbyshire E, Schön C. Association between Maternal Choline, Fetal Brain Development, and Child Neurocognition: Systematic Review and Meta-Analysis of Human Studies. Adv Nutr. 2022;13(6):2445–2457. https://doi.org/10.1093/advances/nmac082.

58. Irvine N, England-Mason G, Field CJ, Dewey D, Aghajafari F. Prenatal Folate and Choline Levels and Brain and Cognitive Development in Children: A Critical Narrative Review. Nutrients. 2022;14(2):364. https://doi.org/10.3390/nu14020364.

59. McNulty H, Rollins M, Cassidy T, Caffrey A, Marshall B, Dornan J et al. Effect of continued folic acid supplementation beyond the first trimester of preg nancy on cognitive performance in the child: a follow-up study from a randomized controlled trial (FASSTT Offspring Trial). BMC Med. 2019;17(1):196. https://doi.org/10.1186/s12916-019-1432-4.

60. Kossowski B, Chyl K, Kacprzak A, Bogorodzki P, Jednoróg K. Dyslexia and age related effects in the neurometabolites concentration in the visual and temporo-parietal cortex. Sci Rep. 2019;9(1):5096. https://doi.org/10.1038/s41598-019-41473-x.

61. Derbyshire E, Maes M. The Role of Choline in Neurodevelopmental Disorders – A Narrative Review Focusing on ASC, ADHD and Dyslexia. Nutrients. 2023;15(13):2876. https://doi.org/10.3390/nu15132876.

62. Agam G, Taylor Z, Vainer E, Golan HM. The influence of choline treatment on behavioral and neurochemical autistic-like phenotype in Mthfrdeficient mice. Transl Psychiatry. 2020;10(1):316. https://doi.org/10.1038/s41398-020-01002-1.

63. Langley EA, Krykbaeva M, Blusztajn JK, Mellott TJ. High maternal choline consumption during pregnancy and nursing alleviates deficits in social interaction and improves anxiety-like behaviors in the BTBR T+Itpr3tf/J mouse model of autism. Behav Brain Res. 2015;278:210–220. https://doi.org/10.1016/j.bbr.2014.09.043.

64. Vallianou N, Christodoulatos GS, Karampela I, Tsilingiris D, Magkos F, Stratigou T et al. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules. 2021;12(1):56. https://doi.org/10.3390/biom12010056.

65. Van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1558–1572. https://doi.org/10.1016/j.bbamem.2017.04.006.

66. Saito RF, Andrade LNS, Bustos SO, Chammas R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells. Front Immunol. 2022;13:768606. https://doi.org/10.3389/fimmu.2022.768606.

67. Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI et al. Scientific opinion on Dietary Reference Values for choline. EFSA J. 2016;14(8):4484. https://doi.org/10.2903/j.efsa.2016.4484.

68. Roeren M, Kordowski A, Sina C, Smollich M. Inadequate Choline Intake in Pregnant Women in Germany. Nutrients. 2022;14(22):4862. https://doi.org/10.3390/nu14224862.

69. Probst Y, Sulistyoningrum DC, Netting MJ, Gould JF, Wood S, Makrides M et al. Estimated Choline Intakes and Dietary Sources of Choline in Pregnant Australian Women. Nutrients. 2022;14(18):3819. https://doi.org/10.3390/nu14183819.

70. Spoelstra SK, Eijsink JJH, Hoenders HJR, Knegtering H. Maternal choline supplementation during pregnancy to promote mental health in offspring. Early Interv Psychiatry. 2023;17(7):643–651. https://doi.org/10.1111/eip.13426.

71. Adams JB, Kirby JK, Sorensen JC, Pollard EL, Audhya T. Evidence based recommendations for an optimal prenatal supplement for women in the US: vitamins and related nutrients. Matern Health Neonatol Perinatol. 2022;8(1):4. https://doi.org/10.1186/s40748-022-00139-9.


Рецензия

Для цитирования:


Дикке ГБ. Роль холина в физиологии репродукции. Медицинский Совет. 2024;(17):25-33. https://doi.org/10.21518/ms2024-366

For citation:


Dikke GB. The role of choline in the physiology of reproductivity. Meditsinskiy sovet = Medical Council. 2024;(17):25-33. (In Russ.) https://doi.org/10.21518/ms2024-366

Просмотров: 274


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)