The role of pulmonary surfactant in the pathogenesis of bronchopulmonary diseases and the prospects of surfactant therapy in COVID-19
https://doi.org/10.21518/ms2024-479
Abstract
The current understanding of the main functions of surfactant, data on its composition, and its role in dysfunction and pathogenesis of bronchopulmonary pathology are discussed. The paper presents new information about the results and prospects of surfactant therapy for bronchopulmonary pathology. The use of surfactant in acute respiratory distress syndrome (ARDS) in adults has been studied. An analysis of the composition of commercial drug products is conducted, and the current experience of replacement therapy with the exogenous surfactant preparation Surfactant-BL in infection caused by the SARS-CoV-2 virus (COVID-19) is provided. Personal experience in the use of the drug Surfactant-BL for treating patients with COVID-19 infection in real clinical practice is also presented using the example of 8 individuals. All patients (male and female) were over 18 years old, had a confirmed diagnosis of COVID-19, showed changes on chest CT scans (CT-2+), were undergoing oxygen therapy by any method, and had CRP > 30 mg/L. Surfactant-BL was administered to all patients as an inhaled emulsion at doses of 75-150 mg. An increase in oxygen saturation was observed in 1 (12.5%) patient 1 day after inhalation of the drug Surfactant-BL, in 4 (50%) patients on the 2nd day, and in 3 (12.5%) patients on the 7th day. The average duration of oxygen therapy was 4 days, and mechanical ventilation was 7 days. The average hospital stay of the patients was 25 days, which was reduced to 20 days after the use of Surfactant-B L. The drug Surfactant-BL demonstrated effectiveness; however, further research is needed as the authors have a limited number of cases studied.
About the Authors
I. V. BliznovaRussian Federation
Irina V. Bliznova - Head of the Infectious Diseases Department No. 3 of the Infection Center, Starooskolsky District Hospital of St. Luke of the Crimea.
9A, Yuzhnaya Obezdnaya Doroga St., Stary Oskol, Belgorod Region, 309500
L. N. Tolmacheva
Russian Federation
Lolita N. Tolmacheva - Head of the Infectious Diseases Center, Starooskolsky District Hospital of St. Luke of the Crimea.
9A, Yuzhnaya Obezdnaya Doroga St., Stary Oskol, Belgorod Region, 309500
M. S. Danilova
Russian Federation
Marina S. Danilova - Student, Mari State University.
1, Lenin Square, Yoshkar-Ola, Republic of Mari El, 424002
R. A. Bontsevich
Russian Federation
Roman A. Bontsevich - Cand. Sci, (Med.), Associate Professor of the Department of Internal Diseases No. 2, Mari State University; Associate Professor of the Department of Pharmacology and Clinical Pharmacology, Belgorod State University; Associate Professor of the Department of Clinical Pharmacology and Pharmacotherapy, Kazan State Medical Academy - a branch of the Russian Medical Academy of Continuing Professional Education.
1, Lenin Square, Yoshkar-Ola, Republic of Mari El, 424002; 85, Pobedy St., Belgorod, 308015; 36, Butlerov St., Kazan, Republic of Tatarstan, 420012
References
1. Notter RH. Lung surfactants: basic science and clinical applications. New York: Marcel Dekker; 2000. 464 p. Available at: https://doi.org/10.1201/9781482270426.
2. Bernhard W. Lung surfactant: Function and composition in the context of development and respiratory physiology. Ann Anat. 2016;208:146-150. https://doi.org/10.1016/j.aanat.2016.08.003.
3. Hamm H, Fabel H, Bartsch W. The surfactant system of the adult lung: physiology and clinical perspectives. Clin Investig. 1992;70(8):637-657. https://doi.org/10.1007/bf00180279.
4. Clements JA, Avery ME. Lung surfactant and neonatal respiratory distress syndrome. Am J Respir Crit Care Med. 1998;157(4):59-66. https://doi.org/10.1164/ajrccm.157.4.nhlb1-1.
5. Johansson J, Curstedt T. Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem. 1997;244(3):675-693. https://doi.org/10.1111/j.1432-1033.1997.00675.x.
6. Goss V, Hunt AN, Postle AD. Regulation of lung surfactant phospholipid synthesis and metabolism. Biochim Biophys Acta. 2013;1831(2):448-458. https://doi.org/10.1016/j.bbalip.2012.11.009.
7. Van Golde LM, Batenburg JJ, Robertson B. The pulmonary surfactant system: biochemical aspects and functional significance. Physiol Rev. 1988;68(2):374-455. https://doi.org/10.1152/physrev.1988.68.2.374.
8. Veldhuizen R, Nag K, Orgeig S, Possmayer F. The role of lipids in pulmonary surfactant. Biochim Biophys Acta. 1998;1408(2-3):90-108. https://doi.org/10.1016/s0925-4439(98)00061-1.
9. Perez-Gil J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim Biophys Acta. 2008;1778(7-8):1676-1695. https://doi.org/10.1016/j.bbamem.2008.05.003.
10. Carreto-Binaghi LE, Aliouat el M, Taylor ML. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res. 2016;17(1):66. https://doi.org/10.1186/s12931-016-0385-9.
11. King BA, Kingma PS. Surfactant protein D deficiency increases lung injury during endotoxemia. Am J Respir Cell Mol Biol. 2011;44(5):709-715. https://doi.org/10.1165/rcmb.2009-0436oc.
12. Hasanov SSh, Mirzoeva IA, Aldjanova SB, Gasimova YA, Gulieva GM. Modern representations of the functions of the pulmonary surfactant proteins. Meditsinskie Novosti. 2019;293(2):44-46. (In Russ.) Available at: https://www.mednovosti.by/journal.aspx?article=8599.
13. Wright JR. Immunomodulatory functions of surfactant. Physiol Rev. 1997;77(4):931-962. https://doi.org/10.1152/physrev.1997.77.4.931.
14. Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB et al. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med. 1999;160(6):1843-1850. https://doi.org/10.1164/ajrccm.160.6.9901117.
15. Rozenberg OA. Pulmonary Surfactants for Acute and Chronic Lung Diseases (Part I). Obshchaya Reanimatologiya. 2014;10(4):51-73. (In Russ.) https://doi.org/10.15360/1813-9779-2014-4-51-73.
16. Morley CJ, Bangham AD, Miller N, Davis JA. Dry artificial lung surfactant and its effect on very premature babies. Lancet. 1981;1(8211):64-68. https://doi.org/10.1016/s0140-6736(81)90002-7.
17. Deshpande S, Suryawanshi P, Ahya K, Maheshwari R, Gupta S. Surfactant Therapy for Early Onset Pneumonia in Late Preterm and Term Neonates Needing Mechanical Ventilation. J Clin Diagn Res. 2017;11(8):SC09-SC12. https://doi.org/10.7860/jcdr/2017/28523.10520.
18. Sinha SK, Lacaze-Masmonteil T, Valls i Soler A, Wiswell TE, Gadzinowski J, Hajdu J et al. A multicenter, randomized, controlled trial of lucinactant versus poractant alfa among very premature infants at high risk for respiratory distress syndrome. Pediatrics. 2005;115(4):1030-1038. https://doi.org/10.1542/peds.2004-2231.
19. Polin RA, Carlo WA, Papile L-A, Tan R, Kumar P, Benitz W et al. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133(1):156-163. https://doi.org/10.1542/peds.2013-3443.
20. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update. Neonatology. 2019;115(4):432-450. https://doi.org/10.1159/000499361.
21. Jobe A, Ikegami M. Surfactant for the treatment of respiratory distress syndrome. Am Rev Respir Dis. 1987;136(5):1256-1275. https://doi.org/10.1164/ajrccm/136.5.1256.
22. Engle WA, Stark AR, Adamkin DH, Batton DG, Bell EF, Bhutani VK et al. Surfactant-replacement therapy for respiratory distress in the preterm and term neonate. Pediatrics. 2008;121(2):419-432. https://doi.org/10.1542/peds.2007-3283.
23. Rosenberg OA. Lung Surfactant and Its Use in Lung Diseases. Obshchaya Reanimatologiya. 2007;3(1):66-77. (In Russ.) https://doi.org/10.15360/1813-9779-2007-1-66-77.
24. Zatovka GN, Duginova SA, Safarov AA, Nechaeva MV, Blauberg EN. Surfactant BL treatment for neonatal respiratory distress syndrome. Russian Journal of Anesthesiology and Reanimatology. 2006;(1):38-43. (In Russ.) Available at: https://biosurf.ru/upload/iblock/5ff/5ff2ca83e794d2141406a5163874d03b.pdf.
25. Eworuke E, Major JM, Gilbert McClain LI. National incidence rates for Acute Respiratory Distress Syndrome (ARDS) and ARDS cause-specific factors in the United States (2006-2014). J Crit Care. 2018;47:192-197. https://doi.org/10.1016/j.jcrc.2018.07.002.
26. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3):818-824. https://doi.org/10.1164/ajrccm.149.3.7509706.
27. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-2533. https://doi.org/10.1001/jama.2012.5669.
28. Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55(4):2000607. https://doi.org/10.1183/13993003.00607-2020.
29. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334-1349. https://doi.org/10.1056/nejm200005043421806.
30. Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol. 2011;6:147-163. https://doi.org/10.1146/annurev-pathol-011110-130158.
31. Brackenbury AM, Malloy JL, McCaig LA, Yao LJ, Veldhuizen RA, Lewis JF. Evaluation of alveolar surfactant aggregates in vitro and in vivo. Eur Respir J. 2002;19(1):41-46. https://doi.org/10.1183/09031936.02.00211202.
32. Gunther A, Kalinowski M, Rosseau S, Seeger W. Surfactant incorporation markedly alters mechanical properties of a fibrin clot. Am J Respir Cell Mol Biol. 1995;13(6):712-718. https://doi.org/10.1165/ajrcmb.13.6.7576709.
33. Baker CS, Evans TW, Randle BJ, Haslam PL. Damage to surfactant-specific protein in acute respiratory distress syndrome. Lancet. 1999;353(9160):1232-1237. https//doi.org/10.1016/s0140-6736(98)09449-5.
34. Gregory TJ, Longmore WJ, Moxley MA, Whitsett JA, Reed CR, Fowler AA 3rd et al. Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J Clin Invest. 1991;88(6):1976-1981. https://doi.org/10.1172/jci115523.
35. Gunther A, Schmidt R, Harodt J, Schmehl T, Walmrath D, Ruppert C et al. Bronchoscopic administration of bovine natural surfactant in ARDS and septic shock: impact on biophysical and biochemical surfactant properties. Eur Respir J. 2002;19(5):797-804. https://doi.org/10.1183/09031936.02.00243302.
36. Avdeev SN, Trushenko NV, Chikina SY, Tsareva NA, Merzhoeva ZM, Yaroshetskiy AI et al. Beneficial effects of inhaled surfactant in patients with COVID-19-associated acute respiratory distress syndrome. Respir Med. 2021;185:106489. https://doi.org/10.1016/j.rmed.2021.106489.
37. Piva S, DiBlasi RM, Slee AE, Jobe AH, Roccaro AM, Filippini M et al. Surfactant therapy for COVID-19 related ARDS: a retrospective case-control pilot study. Respir Res. 2021;22(1):20. https://doi.org/10.1186/s12931-020-01603-w.
38. Veldhuizen RAW, Zuo YY, Petersen NO, Lewis JF, Possmayer F. The COVID-19 pandemic: a target for surfactant therapy? Expert Rev Respir Med. 2021;15(5):597-608. https://doi.org/10.1080/17476348.2021.1865809.
39. Авдеев СН, Адамян ЛВ, Алексеева ЕИ, Багненко СФ, Баранов АА, Баранова НН. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19): временные методические рекомендации. 2022. 260 с. Режим доступа: https://library.mededtech.ru/rest/documents/COVID-19_V17.
40. Ruta AV, Luchinina EV, Shelekchova TV, Zaitseva MR, Luchinin EA, Bontsevich RA. Effect of prednisolone on inflammatory biomarkers in interstitial pneumonia associated with coronavirus infection. Challenges in Modern Medicine. 2022;45(2):129-140. (In Russ.) https://doi.org/10.52575/2687-0940-2022-45-2-129-140.
Review
For citations:
Bliznova IV, Tolmacheva LN, Danilova MS, Bontsevich RA. The role of pulmonary surfactant in the pathogenesis of bronchopulmonary diseases and the prospects of surfactant therapy in COVID-19. Meditsinskiy sovet = Medical Council. 2024;(20):116-122. (In Russ.) https://doi.org/10.21518/ms2024-479