Pleiotropic effects of osteoarthritis therapy
https://doi.org/10.21518/ms2024-535
Abstract
The article discusses the problem of osteoarthritis, its increasing prevalence and high comorbidity. The data on the effect of osteoarthritis on the course of comorbid conditions, as well as the influence of a number of common diseases, such as hypertension on the development of osteoarthritis, are presented. In matters of therapy, data are provided on the effectiveness of the use of glucosamine, chondroitin sulfate and diacerein. The article presents the results of studies demonstrating the pleiotropic properties of these molecules. Thus, the most important pleiotropic effects of glucosamine include a preventive role in the development of atherosclerosis, an effect on reducing the risk of general cardiovascular events by 15% and the risk of individual cardiovascular events by 9–22%. Glucosamine intake is also associated with a reduced risk of lung cancer and mortality from lung cancer. The results of large cohort studies demonstrated that glucosamine use was associated with a 17% reduction in the risk of developing DM2, as well as a lower risk of developing gout in women and a lower risk of developing dementia. The use of chondroitin sulfate increased the bone mineral density of rats with diabetes mellitus, and also relieved the symptoms of hyperglycemia, polydipsia and polyphagia caused by diabetes in rats. The article also presents the results of a study that demonstrated significant inhibition of HCT-116 xenograft tumor development in mice by suppressing proliferation and inducing apoptosis while taking chondroitin sulfate. In other studies, it has demonstrated the ability to reduce oxidative stress and increase the amount of antioxidants that are important for neuroregeneration. The use of diacerein helps to increase insulin secretion and improve metabolic control in patients with type 2 diabetes mellitus. Thus, regular intake of glucosamine, chondroitin sulfate and diacerein can affect comorbid conditions, improving their course, as well as reduce cardiovascular risks.
About the Authors
Yu. S. FilatovaRussian Federation
Yulia S. Filatova - Cand. Sci. (Med.), Associate Professor, Associate Professor of the E.N. Dormidontov Department of Therapy at the Institute of Continuing Postgraduate Education, Yaroslavl State Medical University.
5, Revolutsionnaya St., Yaroslavl, 150000
N. V. Yaltseva
Russian Federation
Natalya V. Yaltseva - Dr. Sci. (Med.), Associate Professor, Professor of the E.N. Dormidontov Department of Therapy at the Institute of Continuing Postgraduate Education, Yaroslavl State Medical University.
5, Revolutsionnaya St., Yaroslavl, 150000
E. A. Leontieva
Russian Federation
Elena A. Leontieva - Assistant of the Department of Polyclinic Therapy, Clinical Laboratory Diagnostics and Medical Biochemistry, Yaroslavl State Medical University.
5, Revolutsionnaya St., Yaroslavl, 150000
References
1. Sacitharan PK. Ageing and Osteoarthritis. Subcell Biochem. 2019;91:123–159. https://doi.org/10.1007/978-981-13-3681-2_6.
2. Mahmoudian A, Lohmander LS, Mobasheri A, Englund M, Luyten FP. Early-stage symptomatic osteoarthritis of the knee — time for action. Nat Rev Rheumatol. 2021;17(10):621–632. https://doi.org/10.1038/s41584-021-00673-4.
3. Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Rheumatol. 2020;72(2):220–233. https://doi.org/10.1002/art.41142.
4. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258): 1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9.
5. Long H, Liu Q, Yin H, Wang K, Diao N, Zhang Y et al. Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis Rheumatol. 2022;74(7):1172–1183. https://doi.org/10.1002/art.42089.
6. Chen X, Tang H, Lin J, Zeng R. Temporal trends in the disease burden of osteoarthritis from 1990 to 2019, and projections until 2030. PLoS ONE. 2023;18(7):e0288561. https://doi.org/10.1002/art.42089.
7. Swain S, Sarmanova A, Coupland C, Doherty M, Zhang W. Comorbidities in Osteoarthritis: A Systematic Review and Meta-Analysis of Observational Studies. Art-hritis Care Res. 2020;72(7):991–1000. https://doi.org/10.1002/acr.24008.
8. Zambon S, Siviero P, Denkinger M, Limongi F, Victoria Castell M, van der Pas et al.; Eposa Research Group. Role of Osteoarthritis, Comorbidity, and Pain in Determining Functional Limitations in Older Populations: European Project on Osteoarthritis. Arthritis Care Res. 2016;68(6):801–810. https://doi.org/10.1002/acr.22755.
9. Siviero P, Zambon S, Limongi F, Castell MV, Cooper C, Deeg DJ et al.; EPOSA Research Group. How Hand Osteoarthritis, Comorbidity, and Pain Interact to Determine Functional Limitation in Older People: Observations From the European Project on OSteoArthritis Study. Arthritis Rheumatol. 2016;68(11):2662–2670. https://doi.org/10.1002/art.39757.
10. Corsi M, Alvarez C, Callahan LF, Cleveland RJ, Golightly YM, Jordan JM et al. Contributions of symptomatic osteoarthritis and physical function to incident cardiovascular disease. BMC Musculoskelet Disord. 2018;19(1):393. https://doi.org/10.1186/s12891-018-2311-4.
11. Fernandes GS, Valdes AM. Cardiovascular disease and osteoarthritis: common pathways and patient outcomes. Eur J Clin Invest. 2015;45(4):405–414. https://doi.org/10.1111/eci.12413.
12. Kabalyk MA, Nevzorova VA, Dubov VS, Tsygankov MA, Kovalenko S. Molecular and cellular effects of intraarticular injection of betamethasone in experimental osteoarthritis. Genij Ortopedii. 2020;26(1):65–71. (In Russ.) https://doi.org/10.18019/1028-4427-2020-26-1-65-71.
13. Kim HS, Shin JS, Lee J, Lee YJ, Kim MR, Bae YH et al. Association between Knee Osteoarthritis, Cardiovascular Risk Factors, and the Framingham Risk Score in South Koreans: A Cross-Sectional Study. PLoS ONE. 2016;11(10): e0165325. https://doi.org/10.1371/journal.pone.0165325.
14. Bae YH, Shin JS, Lee J, Kim MR, Park KB, Cho JH et al. Association between Hypertension and the Prevalence of Low Back Pain and Osteoarthritis in Koreans: A Cross-Sectional Study. PLoS ONE. 2015;10(9):e0138790. https://doi.org/10.1371/journal.pone.0138790.
15. Zhang YM, Wang J, Liu XG. Association between hypertension and risk of knee osteoarthritis: A meta-analysis of observational studies. Medicine. 2017;96(32):e7584. https://doi.org/10.1097/MD.0000000000007584.
16. Kabalyk MA, Nevzorova VA. Cardiovascular diseases and osteoarthritis: general mechanisms of development, prospects for combined prevention and therapy. Cardiovascular Therapy and Prevention. 2021;20(1):97–104. (In Russ.) https://doi.org/10.15829/1728-8800-2021-2660.
17. Filimonova OG, Leushina EA. Frequency of concomitant pathology in patients with osteoarthritis. Eurasian Scientific Association. 2021;(8-2): 135–137. (In Russ.) Available at: https://elibrary.ru/ejmxvn.
18. Park D, Park YM, Ko SH, Choi YH, Min DU, Ahn JH et al Association between knee osteoarthritis and the risk of cardiovascular disease and the synergistic adverse effects of lack of exercise. Sci Rep. 2023;13(1):2777. https://doi.org/10.1038/s41598-023-29581-1.
19. Veronese N, Cooper C, Reginster JY, Hochberg M, Branco J, Bruyère O et al . Type 2 diabetes mellitus and osteoarthritis. Semin Arthritis Rheum. 2019;49(1):9–19. https://doi.org/10.1016/j.semarthrit.2019.01.005.
20. Louati K, Vidal C, Berenbaum F, Sellam J. Association between diabetes mellitus and osteoarthritis: systematic literature review and meta-analysis. RMD Open. 2015;1(1):e000077. https://doi.org/10.1136/rmdopen-2015-000077
21. Sibbritt D, Adams J, Lui CW, Broom A, Wardle J. Who uses glucosamine and why? A study of 266,848 Australians aged 45 years and older. PLoS ONE. 2012;7:e41540. https://doi.org/10.1371/journal.pone.0041540.
22. Bell GA, Kantor ED, Lampe JW, Shen DD, White E. Use of glucosamine and chondroitin in relation to mortality. Eur J Epidemiol. 2012;27:593–603. https://doi.org/10.1007/s10654-012-9714-6.
23. Weimer S, Priebs J, Kuhlow D, Groth M, Priebe S, Mansfeld J et al. D-Glucosamine supplementation extends life span of nematodes and of ageing mice. Nat Commun. 2014;5:3563. https://doi.org/10.1038/ncomms4563.
24. Bazzano LA, Hu T, Reynolds K, Yao L, Bunol C, Liu Y et al. Effects of low-carbohydrate and low-fat diets: a randomized trial. Ann Intern Med. 2014;161:309–318. https://doi.org/10.7326/M14-0180.
25. Yao D, Xu L, Xu O, Li R, Chen M, Shen H et al. O-Linked β-N-Acetylglucosamine Modification of A20 Enhances the Inhibition of NF-κB (Nuclear Factor-κB) Activation and Elicits Vascular Protection After Acute Endoluminal Arterial Injury. Arterioscler Thromb Vasc Biol. 2018;38(6):1309–1320. https://doi.org/10.1161/ATVBAHA.117.310468.
26. Ma H, Li X, Sun D, Zhou T, Ley SH, Gustat J et al. Association of habitual glucosamine use with risk of cardiovascular disease: prospective study in UK Biobank. BMJ. 2019;365:l1628. https://doi.org/10.1136/bmj.l1628.
27. Li G, Zhang X, Liu Y, Zhang J, Li L, Huang X et al. Relationship between glucosamine use and the risk of lung cancer: data from a nationwide prospective cohort study. Eur Respir J. 2022;59(3):2101399. https://doi.org/10.1183/13993003.01399-2021.
28. Robinson KA, Sens DA, Buse MG. Pre-exposure to glucosamine induces insulin resistance of glucose transport and glycogen synthesis in isolated rat skeletal muscles. Study of mechanisms in muscle and in rat-1 fibroblasts overexpressing the human insulin receptor. Diabetes. 1993;42(9):1333–1346. https://doi.org/10.2337/diab.42.9.1333.
29. Patti ME, Virkamäki A, Landaker EJ, Kahn CR, Yki-Järvinen H. Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signaling events in skeletal muscle. Diabetes. 1999;48(8):1562–1571. https://doi.org/10.2337/diabetes.48.8.1562
30. Albert SG, Oiknine RF, Parseghian S, Mooradian AD, Haas MJ, McPherson T. The effect of glucosamine on Serum HDL cholesterol and apolipoprotein AI levels in people with diabetes. Diabetes Care. 2007;30(11):2800–2803. https://doi.org/10.2337/dc07-0545.
31. Reginster JY, Deroisy R, Rovati LC, Lee RL, Lejeune E, Bruyere O et al. Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet. 2001;357(9252):251–256. https://doi.org/10.1016/S0140-6736(00)03610-2.
32. Yomogida S, Hua J, Sakamoto K, Nagaoka I. Glucosamine suppresses interleukin-8 production and ICAM-1 expression by TNF-alpha-stimulated human colonic epithelial HT-29 cells. Int J Mol Med. 2008;22(2):205–211. Available at: https://pubmed.ncbi.nlm.nih.gov/18636175.
33. Azuma K, Osaki T, Wakuda T, Tsuka T, Imagawa T, Okamoto Y, Minami S. Suppressive effects of N-acetyl-D-glucosamine on rheumatoid arthritis mouse models. Inflammation. 2012;35(4):1462–1465. https://doi.org/10.1007/s10753-012-9459-0.
34. Hu FB, Stampfer MJ. Is type 2 diabetes mellitus a vascular condition? Arterioscler Thromb Vasc Biol. 2003;23(10):1715–1716. https://doi.org/10.1161/01.ATV.0000094360.38911.71.
35. Ma H, Li X, Zhou T, Sun D, Liang Z, Li Y et al. Glucosamine Use, Inflammation, and Genetic Susceptibility, and Incidence of Type 2 Diabetes: A Prospective Study in UK Biobank. Diabetes Care. 2020;43(4):719–725. https://doi.org/10.2337/dc19-1836.
36. Liu M, Ye Z, Zhang Y, Yang S, Wu Q, Zhou C et al. Associations of habitual glucosamine supplementation with incident gout: a large population based cohort study. Biol Sex Differ. 2022;13(1):52. https://doi.org/10.1186/s13293-022-00461-z.
37. Li ZH, Gao X, Chung VC, Zhong WF, Fu Q, Lv YB et al Associations of regular glucosamine use with all-cause and cause-specific mortality: a large prospective cohort study. Ann Rheum Dis. 2020;79(6):829–836. https://doi.org/10.1136/annrheumdis-2020-217176.
38. Zheng J, Ni C, Zhang Y, Huang J, Hukportie DN, Liang B, Tang S. Association of regular glucosamine use with incident dementia: evidence from a longitudinal cohort and Mendelian randomization study. BMC Med. 2023;21(1):114. https://doi.org/10.1186/s12916-023-02816-8.
39. Osago H, Shibata T, Hara N, Kuwata S, Kono M, Uchio Y, Tsuchiya M. Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Biochem. 2014;467:62–74. https://doi.org/10.1016/j.ab.2014.08.005.
40. Anower-E-Khuda MF, Kimata K. Human blood glycosaminoglycans: isolation and analysis. Methods Mol Biol. 2015;1229:95–103. https://doi.org/10.1007/978-1-4939-1714-3_10.
41. Melgar-Lesmes P, Garcia-Polite F, Del-Rey-Puech P, Rosas E, Dreyfuss JL, Montell E et al. Treatment With Chondroitin Sulfate to Modulate Inflammation and Atherogenesis in Obesity. Atherosclerosis. 2016;24 5:82–87. https://doi.org/10.1016/j.atherosclerosis.2015.12.016
42. Vergés J, Montell E, Herrero M, Perna C, Cuevas J, Dalmau J et al. Clinical and Histopathological Improvement of Psoriasis With Oral Chondroitin Sulfate: A Serendipitous Finding. Dermatol Online J. 2005;11(1):31–44. https://doi.org/10.5070/D32zh8x3vf.
43. Hatano S, Watanabe H. Regulation of Macrophage and Dendritic Cell Function by Chondroitin Sulfate in Innate to Antigen-Sspecific Adaptive Immunity. Front Immunol. 2020;11:232–232. https://doi.org/10.3389/fimmu.2020.00232.
44. Seol BG, Kim JH, Woo M, Song YO, Choi YH, Noh JS et al. Skate Cartilage Extracts Containing Chondroitin Sulfate Ameliorates Hyperlipidemia-Induced Inflammation and Oxidative Stress in High Cholesterol Diet-Fed LDL Receptor Knockout Mice in Comparison With Shark Chondroitin Sulfate. Nutr Res Pract. 2020;14(3):175–187. https://doi.org/10.4162/nrp.2020.14.3.175.
45. Pudełko A, Wisowski G, Olczyk K, Koźma EM. The Dual Role of the Glycosaminoglycan Chondroitin-6-Sulfate in the Development, Progression and Metastasis of Cancer. FEBS J. 2019;286(10):1815–1837. https://doi.org/10.1111/febs.14748.
46. Knowles TA, Hosfield BD, Pecoraro AR, Li H, Shelley WC, Markel TA. It’s all in the milk: chondroitin sulfate as potential preventative therapy for necrotizing enterocolitis. Pediatr Res. 2021;89(6):1373–1379. https://doi.org/10.1038/s41390-020-01125-7.
47. Shmagel A, Demmer R, Knights D, Butler M, Langsetmo L, Lane NE, Ensrud K. The Effects of Glucosamine and Chondroitin Sulfate on Gut Microbial Composition: A Systematic Review of Evidence from Animal and Human Studies. Nutrients. 2019;11(2):294. https://doi.org/10.3390/nu11020294.
48. Manohar K, Hosfield BD, Mesfin FM, Colgate C, Shelley WC, Liu J et al Chondroitin sulfate supplementation improves clinical outcomes in a murine model of necrotizing enterocolitis. Physiol Rep. 2023;11(17):e15819. https://doi.org/10.14814/phy2.15819.
49. Qi SS, Shao ML, Sun Z, Chen SM, Hu YJ, Li XS et al. Chondroitin Sulfate Alleviates Diabetic Osteoporosis and Repairs Bone Microstructure via AntiOxidation, Anti-Inflammation, and Regulating Bone Metabolism. Front Endocrinol. 2021;12:759843. https://doi.org/10.3389/fendo.2021.759843.
50. Wu R, Shang N, Gui M, Yin J, Li P. Sturgeon (Acipenser)-Derived Chondroitin Sulfate Suppresses Human Colon Cancer HCT-116 Both In Vitro and In Vivo by Inhibiting Proliferation and Inducing Apoptosis. Nutrients. 2020;12(4):1130. https://doi.org/10.3390/nu12041130.
51. Olaseinde OF, Owoyele BV. Chondroitin sulfate produces antinociception and neuroprotection in chronic constriction injury-induced neuropathic pain in rats by increasing anti-inflammatory molecules and reducing oxidative stress. Int J Health Sci. 2021;15(5):3–17 Available at: https://pubmed.ncbi.nlm.nih.gov/34548858.
52. Rintelen B, Neumann K, Leeb BF. A meta-analysis of controlled clinical studies with diacerein in the treatment of osteoarthritis. Arch Intern Med. 2006;166(17):1899–1906. https://doi.org/10.1001/archinte.166.17.1899.
53. Martel-Pelletier J, Pelletier JP. Effects of diacerein at the molecular level in the osteoarthritis disease process. Ther Adv Musculoskelet Dis. 2010;2(2):95–104. https://doi.org/10.1177/1759720X09359104.
54. Moldovan F, Pelletier JP, Jolicoeur FC, Cloutier JM, Martel-Pelletier J. Diacerhein and rhein reduce the ICE-induced IL-1 beta and IL-18 activation in human osteoarthritic cartilage. Osteoarthr Cartil. 2000;8(3):186–196. https://doi.org/10.1053/joca.1999.0289.
55. Yaron M, Shirazi I, Yaron I. Anti-interleukin-1 effects of diacerein and rhein in human osteoarthritic synovial tissue and cartilage cultures. Osteoarthr Cartil. 1999;7(3):272–280. https://doi.org/10.1053/joca.1998.0201.
56. Pavelka K, Bruyère O, Cooper C, Kanis JA, Leeb BF, Maheu E et al. Diacerein: Benefits, Risks and Place in the Management of Osteoarthritis. An Opinion-Based Report from the ESCEO. Drugs Aging. 2016;33(2):75–85. https://doi.org/10.1007/s40266-016-0347-4.
57. Zeng F, Wang K, Duan H, Xu XT, Kuang GY, Lu M. Diacerein versus non-steroidal anti-inflammatory drugs in the treatment of knee osteoarthritis: a meta-analysis. J Orthop Surg Res. 2023;18(1):308. https://doi.org/10.1186/s13018-023-03786-6.
58. Jangsiripornpakorn J, Srisuk S, Chailurkit L, Nimitphong H, Saetung S, Ongphiphadhanakul B. The glucose-lowering effect of low-dose diacerein and its responsiveness metabolic markers in uncontrolled diabetes. BMC Res Notes. 2022;15(1):91. https://doi.org/10.1186/s13104-022-05974-9.
59. Villar MM, Martínez-Abundis E, Preciado-Márquez RO, González- Ortiz M. Effect of diacerein as an add-on to metformin in patients with type 2 diabetes mellitus and inadequate glycemic control. Arch Endocrinol Metab. 2017;61(2):188–192. https://doi.org/10.1590/2359-3997000000242.
60. Ramos-Zavala MG, Gonzalez-Ortiz M, Martinez-Abundis E, Robles-Cervantes JA, Gonzalez-Lopez R, Santiago-Hernandez NJ. Effect of diacerein on insulin secretion and metabolic control in drug-naïve patients with type 2 diabetes. Diabetes Care. 2011;34(7):1591–1594. https://doi.org/10.2337/dc11-0357.
61. Piovesan F, Tres GS, Moreira LB, Andrades ME, Lisboa HK, Fuchs SC. Effect of diacerein on renal function and inflammatory cytokines in participants with type 2 diabetes mellitus and chronic kidney disease: a randomized controlled trial. PLoS ONE. 2017;12(10):e0186554. https://doi.org/10.1371/journal.pone.0186554.
62. Tres GS, Fuchs SC, Piovesan F, Koehler-Santos P, Pereira FDS, Camey S et al. Effect of Diacerein on Metabolic Control and Inflammatory Markers in Patients with Type 2 Diabetes Using Antidiabetic Agents: A Randomized Controlled Trial. J Diabetes Res. 2018;2018:4246521. https://doi.org/10.1155/2018/4246521.
63. Almezgagi M, Zhang Y, Hezam K, Shamsan E, Gamah M, Al-Shaebi F et al. Diacerein: Recent insight into pharmacological activities and molecular pathways. Biomed Pharmacother. 2020;131:110594. https://doi.org/10.1016/j.biopha.2020.110594.
64. Torina AG, Reichert K, Lima F, de Souza Vilarinho KA, de Oliveira PP, do Carmo HR et al. Diacerein improves left ventricular remodeling and cardiac function by reducing the inflammatory response after myocardial infarction. PLoS ONE. 2015;10(3):e0121842. https://doi.org/10.1371/journal.pone.0121842.
65. Belyaeva IB, Mazurov VI. Pleiotropic effects of diacerein in comorbid patients with osteoarthritis. Sovremennaya Revmatologiya. 2022;16(4):98–104. (In Russ.) https://doi.org/10.14412/1996-7012-2022-4-98-104.
Review
For citations:
Filatova YS, Yaltseva NV, Leontieva EA. Pleiotropic effects of osteoarthritis therapy. Meditsinskiy sovet = Medical Council. 2024;(22):96-104. (In Russ.) https://doi.org/10.21518/ms2024-535