Preview

Meditsinskiy sovet = Medical Council

Advanced search

Chemoreactome analysis of methylethylpyridinol and possible mechanisms of ophthalmoprotection

https://doi.org/10.21518/ms2024-547

Abstract

Introduction. Methylethylpyridinol (MEPD or Emoxypine) is widely used in practice to treat various eye diseases, exhibiting angioprotective, antiplatelet, antioxidant effects. The molecular mechanisms for the implementation of these and other pharmacological effects of MEPD are not entirely obvious.

Aim. To conduct a chemoreactome analysis of MEPD aimed at identifying the molecular mechanisms of the drug action. Materials and methods. The pharmacological/biological properties of MEPD were assessed using methods for chemoinformatic analysis of molecules developed in the scientific school of RAS academicians Yu.I. Zhuravlev and K.V. The analysis procedure is based on the latest machine learning technologies developed in the theory of topological and metric analysis of feature descriptions in application to chemographs.

Results and discussion. The results of chemoproteomic profiling of MEPD showed anti-inflammatory, antihypoxic, antioxidant, vasoprotective and vasorelaxant effects of the drug. By inhibiting arachidonate-5-lipoxygenase, leukotriene A4 hydrolase, leu kotriene LTB4 and prostanoid receptors, inhibiting the production of superoxide anions and leukotriene, MEPD helps to reduce local inflammation in eye tissues. Evaluations of the vasodynamic and neuroprotective effects of MEPD in vitro, obtained as a result of chemoreactome analysis, indicated neurotrophic, neuroprotective and vasodilatory effects of MEPD. The neurotrophic effect in vitro in cultured sensory neurons and neuroprotective activity, assessed by the protective effect against L-homocysteine, exceeded the activity of control molecules. The analysis demonstrated the vasodilatory activity of MEPD and the reduction of intraocular pressure in vivo.

Conclusions. Based on the results of the chemoreactome analysis, new molecular mechanisms of the anti-inflammatory action of MEPD in eye tissues were proposed, carried out through the inhibition of certain target proteins. The antioxidant properties of MEPD can be associated with both specific interactions with proteome proteins (e.g., activation of antioxidant proteins) and with the direct action of the molecule on reactive oxygen species.

About the Authors

O. A. Gromova
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
Russian Federation

Olga A. Gromova - Dr. Sci. (Med.), Professor, Leading Researcher, Institute of Pharmacoinformatics.

44, Bldg. 2, Vavilov St., Moscow, 119333



I. Yu. Torshin
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
Russian Federation

Ivan Yu. Torshin - Cand. Sci. (Phys.&Math.), Cand. Sci. (Chem.), Leading Researcher, Institute of Pharmacoinformatics.

44, Bldg. 2, Vavilov St., Moscow, 119333



A. N. Gromov
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
Russian Federation

Andrey N. Gromov - Research Engineer.

44, Bldg. 2, Vavilov St., Moscow, 119333



References

1. Chou R, Selph S, Blazina I, Bougatsos C, Jungbauer R, Fu R et al. Screening for Glaucoma in Adults: A Systematic Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 214. AHRQ Publication No. 21-05286-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2022. Available at: https://www.ncbi.nlm.nih.gov/books/NBK581087/.

2. Kuroyedov AV, Brzhesky VV, Krinitsyna EA. Traditional, unfairly forgotten, rarely used and promising drug delivery methods in ophthalmology: a clinical interpretation (part 1). Rossiiskii Oftal’mologicheskii Zhurnal. 2019;12(2):83–95. (In Russ.) https://doi.org/10.21516/2072-0076-2019-12-2-83-95.

3. Lançon A, Frazzi R, Latruffe N. Anti-Oxidant, Anti-Inflammatory and AntiAngiogenic Properties of Resveratrol in Ocular Diseases. Molecules. 2016;21(3):304. https://doi.org/10.3390/molecules21030304 .

4. Kiseleva TN, Chudin AV, Balatskaya NV, Shchipanova AI, Khoroshilova-Maslova IP, Zaytsev MS et al. An experimental study of resveratrol effect on neurotrophic and structural changes in retinal ischemia. Rossiiskii Oftal’mologicheskii Zhurnal. 2020;13(4):39–47. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-4-39-47.

5. Choy CK, Cho P, Chung WY, Benzie IF. Water-Soluble antioxidants in human tears: effect of the collection method. Invest Ophthalmol Vis Sci. 2001;42(13):3130–3134. Available at: https://iovs.arvojournals.org/article.aspx?articleid=2123292.

6. Vergroesen JE, Schuster AK, Stuart KV, Asefa NG, Cougnard-Grégoire A, Delcourt C et al. Association of Systemic Medication Use with Glaucoma and Intraocular Pressure: The European Eye Epidemiology Consortium. Ophthalmology. 2023;130(9):893–906. https://doi.org/10.1016/j.ophtha.2023.05.001.

7. Wilson JX. Regulation of vitamin C transport. Annu Rev Nutr. 2005;25:105–125. https://doi.org/10.1146/annurev.nutr.25.050304.092647.

8. Bakhritdinova FA, Oralov BA, Mirrakhimova SSh, Ashurov OM, Xadjimuhamedov BB. Reparative and antioxidant therapy of chemical eye burns. Rossiiskii Oftal’mologicheskii Zhurnal. 2021;14(4):31–37. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-4-31-37.

9. Егоров ЕА, Алексеев ВН, Астахов ЮС. Рациональная фармакотерапия в офтальмологии. 2-е изд. М.: Литтерра; 2011. 1072 с. Режим доступа: https://www.rosmedlib.ru/book/ISBN9785423500115.html.

10. Gromova OA, Torshin IIu, Putilina MV, Stakhovskaya LV, Rudakov KV. The chemoreactomic analysis of the central mechanisms of action of non-steroidal anti-inflammatory drugs. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2020;120(1):70–77. (In Russ.) https://doi.org/10.17116/jnevro202012001170.

11. Торшин ИЮ, Громова ОА. Экспертный анализ данных в молекулярной фармакологии. М.: МЦНМО; 2012. 747 с. Режим доступа: https://elibrary.ru/qmdkdz.

12. Torshin IYu, Gromova OA, Fedotova LE, Gromov AN. Comparative chemoreactome analysis of dexketoprofen, ketoprofen, and diclofenac. Neurology, Neuropsychiatry, Psychosomatics. 2018;10(1):47–54. (In Russ.) https://doi.org/10.14412/2074-2711-2018-1-47-54.

13. Torshin IYu, Gromova OA, Stakhovskaya LV, Semenov VA. Chemoreactome analysis of tolperisone, tizanidine and baclofen molecules: anticholinergic, antispasmodic and analgesic mechanisms of action. Neurology, Neuropsychiatry, Psychosomatics. 2018;10(4):72–80. (In Russ.) https://doi.org/10.14412/2074-2711-2018-4-72-80.

14. Torshin IYu. On optimization problems arising from the application of topological data analysis to the search for forecasting algorithms with fixed correctors. Informatics and Applications. 2023;17(2):2–10. (In Russ.) https://doi.org/10.14357/19922264230201.

15. Torshin IYu. Sensing the change from molecular genetics to personalized medicine. New York: Nova Biomedical Books; 2009. 366 p.

16. Torshin IY, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: Fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognit Image Anal. 2014;24(1):11–23. https://doi.org/10.1134/s1054661814010209.

17. Torshin IY, Rudakov KV. On the application of the combinatorial theory of solvability to the analysis of chemographs: Part 2. Local completeness of invariants of chemographs in view of the combinatorial theory of solvability. Pattern Recognit Image Anal. 2014;24(2):196–208. https://doi.org/ 10.1134/S1054661814020151.

18. Torshin IY. The study of the solvability of the genome annotation problem on sets of elementary motifs. Pattern Recognit Image Anal. 2011;21(4):652–662. https://doi.org/10.1134/S1054661811040171

19. Torshin IY, Rudakov KV. On the Procedures of Generation of Numerical Features Over Partitions of Sets of Objects in the Problem of Predicting Numerical Target Variables. Pattern Recognit Image Anal. 2019;29(4):654–667. https://doi.org/10.1134/S1054661819040175

20. Андрианова ОП, Антонов СА, Балыклова КС, Горпинченко НВ, Власов АМ, Дементьев СП и др. Сборник тестов по фармацевтической химии: в 2 т. М.: Лаборатория знаний; 2023. Т. 1. 304 с. Режим доступа: https://e.lanbook.com/book/319247?category=21925.

21. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3.

22. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005;53(6):1841–1856. https://doi.org/10.1021/jf030723c.

23. Gavrilov VB, Gavrilova AR, Mazhul’ LM. Methods of determining lipid peroxidation products in the serum using a thiobarbituric acid test. Voprosy Meditsinskoi Khimii. 1987;33(1):118–122. (In Russ.) Available at: https://pbmc.ibmc.msk.ru/ru/article-ru/PBMC-1987-33-1-118/.

24. Müller G, Frühauf A, Mathias B. Thiobarbituric acid positive substances as indicators of lipid peroxidation. Z Gesamte Inn Med. 1986;41(24):673–676. (In German) Available at: https://pubmed.ncbi.nlm.nih.gov/3564590/.

25. Torshin IYu, Gromova OA, Sardaryan IS, Fedotova LE. Comparative chemoreactome analysis of mexidol. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2017;117(1-2):75–83. (In Russ.) https://doi.org/10.17116/jnevro20171171275-84.

26. Kozlov SA, Khyshiktuev BS, Logunov NA. The influence of complex therapy by emoxipin on the course of diabetic retinopathy. Vestnik Oftalmologii. 2003;119(2):28–30. (In Russ.) Available at: https://elibrary.ru/tudhmd.

27. Liljebris C, Selén G, Resul B, Stjernschantz J, Hacksell U. Derivatives of 17-phenyl-18,19,20-trinorprostaglandin F2 alpha isopropyl ester: potential antiglaucoma agents. J Med Chem. 1995;38(2):289–304. https://doi.org/10.1021/jm00002a011.


Review

For citations:


Gromova OA, Torshin IY, Gromov AN. Chemoreactome analysis of methylethylpyridinol and possible mechanisms of ophthalmoprotection. Meditsinskiy sovet = Medical Council. 2024;(23):187-196. (In Russ.) https://doi.org/10.21518/ms2024-547

Views: 345


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)