Psychology of patient adaptation to the use of artificial intelligence in screening for chronic noncommunicable diseases
https://doi.org/10.21518/ms2024-551
Abstract
Introduction. Today, the traditional model of medical care is being supplemented and partially replaced by new forms of its implementation. Thus, technologies based on artificial intelligence take over the functions of diagnosis, treatment, screening and monitoring of chronic diseases.
Aim. To develop a medical methodology for remote questionnaire screening of chronic kidney disease in young people to optimize their diagnosis.
Materials and methods. The study involved 3,155 students aged 19.6 ± 1.5 years, of whom 46.9% were men and 53.1% were women. During the medical examination, all participants used a remote questionnaire screening.
Results. A low degree of risk was detected in 57.4%, an average in 30.9%, and a high in 11.7% of the subjects. The patients with the highest frequency are concerned about complaints from the endocrine (28.9%), digestive (21.8%), respiratory (21.1%), cardiovascular (20.1%) and oncological alertness (8.1%). The presence of FR in two or more pathology profiles was determined in 75.7% of the examined patients. Among the most common FR are nine related to the self-assessment of the emotional and personal sphere. 96.6% of the surveyed and 91.7% of the medical staff are satisfied with the telemedicine system.
Conclusions. 1. The use of remote questionnaire screening of HCNH provided wide coverage and high satisfaction with medical services. 2. The system allocates a contingent of subjects with high, medium and low risk, as well as people with critical disabilities in need of priority assistance. 3. The combination of data from anamnestic remote examination and clinical examination improves the quality of medical decision-making and reduces its subjective component. 4. The use of statistical methods has shown good effectiveness of the integrated assessment of health and satisfactory for the detection of chronic kidney disease. 5. The use of remote questionnaire screening of HRH in young people reduces treatment costs and improves the quality of life of patients.
About the Author
P. V. SeliverstovRussian Federation
Pavel V. Seliverstov - Cand. Sci. (Med.), Associate Professor of the 2nd Department (Therapy for Advanced Training of Physicians).
6, Akademik Lebedev St., St Petersburg, 194044
References
1. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6(2):94–98. https://doi.org/10.7861/futurehosp.6-2-94.
2. Селиверстов ПВ. Искусственный интеллект в сестринской практике. Правовые аспекты и трансформация профессиональной роли медицинской сестры. Медицинская сестра. 2024;26(8):11–19. https://doi.org/10.29296/25879979-2024-08-02.
3. Третьякова ЕП. Использование искусственного интеллекта в здравоохранении: распределение ответственности и рисков. Цифровое право. 2021;2(4):51–60. https://doi.org/10.38044/2686-9136-2021-2-4-51-60.
4. Jarrahi MH. Artificial intelligence and the future of work: human-AI symbiosis in organizational decision making. Bus Horiz. 2018;61(4):577–586. https://doi.org/10.1016/j.bushor.2018.03.007.
5. Селивёрстов ДП. Нанореволюция в медицине: синергия нанотехнологий, искусственного интеллекта и цифровых инноваций. Медицинская сестра. 2024;26(7):44–48. https://doi.org/10.29296/25879979-2024-07-06.
6. McGenity C, Clarke EL, Jennings C, Matthews G, Cartlidge C, Freduah-Agyemang H et al. Artificial intelligence in digital pathology: a diagnostic test accuracy systematic review and meta-analysis. arXiv. 2023;arXiv:2306.07999. https://doi.org/10.48550/arXiv.2306.07999.
7. Dreyer K, Allen B. Artificial Intelligence in Health Care: Brave New World or Golden Opportunity? J Am Coll Radiol. 2018;15(4):655–657. https://doi.org/10.1016/j.jacr.2018.01.010.
8. Селиверстов ПВ, Бакаева СР, Шаповалов ВВ, Алешко ОВ. Телемедицинские технологии: от теории к практике. Медицинский совет. 2022;16(23):366–372. https://doi.org/10.21518/2079-701X-2022-16-23-366-372.
9. Esmaeilzadeh P, Mirzaei T, Dharanikota S. Patients’ Perceptions Toward Human – Artificial Intelligence Interaction in Health Care: Experimental Study. J Med Internet Res. 2021;23(11):e25856. https://doi.org/10.2196/25856.
10. Tyson A, Pasquini G, Spencer A, Funk C. 60% of Americans Would Be Uncomfortable With Provider Relying on AI in Their Own Health Care. Pew Research Center. 2023. Available at: https://www.pewresearch.org/science/2023/02/22/60-of-americans-would-be-uncomfortable-withprovider-relying-on-ai-in-their-own-health-care/.
11. Селивёрстов ПВ. Перспективы использования телемедицинских технологий на основе искусственного интеллекта при проведении медицинского осмотра. Медицинский совет. 2024;18(5):312–319. https://doi.org/10.21518/ms2024-072.
12. Choudhury A, Elkefi S. Acceptance, initial trust formation, and human biases in artificial intelligence: Focus on clinicians. Front Digit Health. 2022;4:966174. https://doi.org/10.3389/fdgth.2022.966174.
13. Кошечкин КА, Хохлов АЛ. Этические проблемы внедрения искусственного интеллекта в здравоохранении. Медицинская этика. 2024;(1):11–17. https://doi.org/10.24075/medet.2024.006.
14. Mudey AB, Dhonde AS, Chandrachood MV. Artificial Intelligence in Healthcare With an Emphasis on Public Health. Cureus. 2024;16(8):e67503. https://doi.org/10.7759/cureus.67503.
15. Donnelly DL. First Do No Harm: Legal Principles Regulating the Future of Artificial Intelligence in Health Care in South Africa. Potchefstroom Electron Law J. 2022;25:10.17159/1727-3781/2022/v25ia11118. https://doi.org/10.17159/1727-3781/2022/v25i0a11118.
16. Коваль ЕА, Мартынова МД, Жадунова НВ. Информированное согласие в эпоху больших данных: необходимость нормативного обновления. Этическая мысль. 2020;20(2):115–131. https://doi.org/10.21146/2074-4870-2020-20-2-115-131.
17. Brunton F, Nissenbaum H. Obfuscation: A User’s Guide for Privacy and Protest. Cambridge: MIT Press; 2016. 136 p. Available at: https://books.google.com/books?id=eGIrEAAAQBAJ&hl=ru&source=gbs_book_other_versions.
18. Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med Ethics. 2021;22(1):122. https://doi.org/10.1186/s12910-021-00687-3.
19. Mehta N, Pandit A, Shukla S. Transforming healthcare with big data analytics and artificial intelligence: A systematic mapping study. J Biomed Inform. 2019;100:103311. https://doi.org/10.1016/j.jbi.2019.103311.
20. Мамина РИ, Пирайнен ЕВ. Эмоциональный искусственный интеллект какинструмент взаимодействия человека и машины. Дискурс. 2023;9(2):35–51. https://doi.org/10.32603/2412-8562-2023-9-2-35-51.
21. Petersson L, Larsson I, Nygren JM, Nilsen P, Neher M, Reed JE et al. Challenges to implementing artificial intelligence in healthcare: a qualitative interview study with healthcare leaders in Sweden. BMC Health Serv Res. 2022;22(1):850. https://doi.org/10.1186/s12913-022-08215-8.
22. Morrow E, Zidaru T, Ross F, Mason C, Patel KD, Ream M, Stockley R. Artificial intelligence technologies and compassion in healthcare: A systematic scoping review. Front Psychol. 2023;13:971044. https://doi.org/10.3389/fpsyg.2022.971044.
23. Толстикова ИИ, Игнатьева ОА, Кондратенко КС, Плетнев АВ. Цифровое поведение и характеристики личности поколения Z в условиях глобальной цифровизации. Информационное общество: образование, наука, культура и технологии будущего. 2020;(4):103–115. https://doi.org/10.17586/2587-8557-2020-4-103-115.
24. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23(1):689. https://doi.org/10.1186/s12909-023-04698-z.
25. Kobyakova OS, Kadyrov FN. Problems of development of telemedicine technologies in Russia through the prism of foreign experience. National Health Care (Russia). 2021;2(2):13–20. (In Russ.) https://doi.org/10.47093/2713-069X.2021.2.2.13-20.
26. Vasyuta EA, Podolskaya TV. Challenges and Prospects for the Introduction of Artificial Intelligence in Medicine. State and Municipal Management. Scholar Notes. 2022;(1):25–32. (In Russ.). https://doi.org/10.22394/2079-1690-2022-1-1-25-32.
27. Seliverstov PV, Bezruchko DS, Vasin AV, Grinevich VB, Semenov KP, Aleshko OV, Shapovalov VV. Telemedicine remote multidisciplinary questionnaire screening as a tool for early detection of chronic non-communicable diseases. Meditsinskiy Sovet. 2023;17(6):142–152. (In Russ.) https://doi.org/10.21518/ms2023-070.
28. Seliverstov PV, Grinevich VB, Shapovalov VV, Kryukov EV. Improving the effectiveness of screening for chronic noncommunicable diseases using artificial intelligence-based technologies. Lechaschi Vrach. 2024;4(27):97–104. (In Russ.) https://doi.org/10.51793/OS.2024.27.4.014.
29. Sevostyanova EV, Nikolaev YuA, Polyakov VYa. The problem of multimorbidity in a modern therapeutic clinic. Bulletin of Siberian Medicine. 2022;21(1): 162–170. (In Russ.) https://doi.org/10.20538/1682-0363-2022-1-162-170.
Review
For citations:
Seliverstov PV. Psychology of patient adaptation to the use of artificial intelligence in screening for chronic noncommunicable diseases. Meditsinskiy sovet = Medical Council. 2024;(23):266-272. (In Russ.) https://doi.org/10.21518/ms2024-551