Preview

Meditsinskiy sovet = Medical Council

Advanced search

Secreted matrix metalloproteinases: Study of the expression profiles in the skin affected by scleroderma

https://doi.org/10.21518/ms2025-007

Abstract

Introduction. Localized scleroderma is a rare autoimmune disorder characterized by a thickening of the skin due to the overdeposition of collagens and other proteins in the dermal extracellular matrix. Matrix metalloproteinases (MMPs) is a family of proteolytic enzymes, playing a crucial role in the catabolism of collagens, maintaining the protein composition of the dermis. Alterations in MMPs activity and expression contribute to the development of the disease.

Aim. To investigate changes in the expression of secreted matrix metalloproteinases (MMP-1, MMP-2, MMP-3, and MMP-9) in scleroderma lesional skin using quantitative polymerase chain reaction to identify potential therapeutic targets.

Materials and methods. Biopsies of lesional and unaffected skin were obtained from patients with scleroderma. PCR was used to assess changes in the expression of MMPs.

Results. The analysis of experimental data revealed significant changes in the expression of MMPs: the increased levels of MMP-2 (3.379 ± 1.177) and MMP-9 (4.471 ± 1.836), and the decreased levels of MMP-1 (0.169 ± 0.036) and MMP-3 (0.240 ± 0.086).

The correlation analysis revealed a strong negative correlation (r = –0.93) between the expression of MMP-1 and the area of scleroderma lesional skin. The computer analysis suggested that changes in the expression of MMPs may contribute to the development of skin lesions as a factor.

Conclusions. The results of this study suggest that some MMPs may serve as biomarkers for assessing the severity of localized scleroderma and as potential molecular targets for therapeutic intervention.

About the Authors

A. V. Mezentsev
Center for Theoretical Problems of Physical and Chemical Pharmacology of Russian Academy of Sciences
Russian Federation

Alexandre V. Mezentsev, Cand. Sci. (Biol.), Leading Researcher

30, Srednyaya Kalitnikovskaya St., Moscow, 109029



Z. A. Nevozinskaya
Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology
Russian Federation

Zofia A. Nevozinskaya, Cand. Sci. (Med.), Dermatovenerologist

20, Seleznevskaya St., Moscow, 127473



V. V. Sobolev
Center for Theoretical Problems of Physical and Chemical Pharmacology of Russian Academy of Sciences
Russian Federation

Vladimir V. Sobolev, Cand. Sci. (Biol.), Senior Researcher

30, Srednyaya Kalitnikovskaya St., Moscow, 109029



A. G. Soboleva
Center for Theoretical Problems of Physical and Chemical Pharmacology of Russian Academy of Sciences; Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery
Russian Federation

Anna G. Soboleva, Cand. Sci. (Biol.), Senior Researcher, Center for Theoretical Problems of Physical and Chemical Pharmacology of Russian Academy of Sciences; Researcher, Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery

30, Srednyaya Kalitnikovskaya St., Moscow, 109029,

3, Tsyurupa St., Moscow, 117418



N. N. Potekaev
Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology; Pirogov Russian National Research Medical University
Russian Federation

Nikolay N. Potekaev, Dr. Sci. (Med.), Professor, Head of the Department of Skin Diseases and Cosmetology, Faculty of Additional Professional Education, Pirogov Russian National Research Medical University; Director, Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology

1, Ostrovityanov St., Moscow, 117997,

17, Leninskiy Ave., Moscow, 119071



I. M. Korsunskaya
Center for Theoretical Problems of Physical and Chemical Pharmacology of Russian Academy of Sciences
Russian Federation

Irina M. Korsunskaya, Dr. Sci. (Med.), Professor, Head of the Laboratory of Physicochemical and Genetic Problems in Dermatology

30, Srednyaya Kalitnikovskaya St., Moscow, 109029



References

1. Wenzel D, Haddadi NS, Afshari K, Richmond JM, Rashighi M. Upcoming treatments for morphea. Immun Inflamm Dis. 2021;9(4):1101–1145. https://doi.org/10.1002/iid3.475.

2. Pradhan V, Rajadhyaksha A, Nadkar M, Pandit P, Surve P, Lecerf M et al. Clinical and autoimmune profile of scleroderma patients from Western India. Int J Rheumatol. 2014;2014:983781. https://doi.org/10.1155/2014/983781.

3. Jinnin M. Mechanisms of skin fibrosis in systemic sclerosis. J Dermatol. 2010;37(1):11–25. https://doi.org/10.1111/j.1346-8138.2009.00738.x.

4. Manetti M, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M. Mechanisms in the loss of capillaries in systemic sclerosis: angiogenesis versus vasculogenesis. J Cell Mol Med. 2010;14(6A):1241–1254. https://doi.org/10.1111/j.1582-4934.2010.01027.x.

5. Zhao M, Wu J, Wu H, Sawalha AH, Lu Q. Clinical treatment options in scleroderma: recommendations and comprehensive review. Clin Rev Allergy Immunol. 2022;62(2):273–291. https://doi.org/10.1007/s12016-020-08831-4.

6. Ferreli C, Gasparini G, Parodi A, Cozzani E, Rongioletti F, Atzori L. Cutaneous Manifestations of Scleroderma and Scleroderma-Like Disorders: a Comprehensive Review. Clin Rev Allergy Immunol. 2017;53(3):306–336. https://doi.org/10.1007/s12016-017-8625-4.

7. Mecoli CA, Casciola-Rosen L. An update on autoantibodies in scleroderma. Curr Opin Rheumatol. 2018;30(6):548–553. https://doi.org/10.1097/BOR.0000000000000550.

8. Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol. 2014;802:31–47. https://doi.org/10.1007/978-94-007-7893-1_3.

9. Cui N, Hu M, Khalil RA. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73. https://doi.org/10.1016/bs.pmbts.2017.02.005.

10. Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int J Mol Sci. 2016;17(6):868. https://doi.org/10.3390/ijms17060868.

11. Cieplak P, Strongin AY. Matrix metalloproteinases – From the cleavage data to the prediction tools and beyond. Biochim Biophys Acta Mol Cell Res. 2017;1864(11 Pt A):1952–1963. https://doi.org/10.1016/j.bbamcr.2017.03.010.

12. Leong E, Bezuhly M, Marshall JS. Distinct Metalloproteinase Expression and Functions In Systemic Sclerosis and Fibrosis: What We Know and the Potential for Intervention. Front Physiol. 2021;12:727451. https://doi.org/10.3389/fphys.2021.727451.

13. Vliagoftis H, Madala SK. Searching for an Animal Model with Clinical Features of Scleroderma. Am J Respir Cell Mol Biol. 2023;69(4):373–375. https://doi.org/10.1165/rcmb.2023-0158ED.

14. Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech. 2014;7(2):193–203. https://doi.org/10.1242/dmm.012062.

15. Rodríguez D, Morrison CJ, Overall CM. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta. 2010;1803(1):39–54. https://doi.org/10.1016/j.bbamcr.2009.09.015.

16. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–573. https://doi.org/10.1016/j.cardiores.2005.12.002.

17. Gaffney J, Solomonov I, Zehorai E, Sagi I. Multilevel regulation of matrix metalloproteinases in tissue homeostasis indicates their molecular specificity in vivo. Matrix Biol. 2015;44–46:191–199. https://doi.org/10.1016/j.matbio.2015.01.012.

18. Fingleton B. MMPs as therapeutic targets – still a viable option? Semin Cell Dev Biol. 2008;19(1):61–68. https://doi.org/10.1016/j.semcdb.2007.06.006.

19. Penmetsa GK, Sapra A. Morphea. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. Available at: https://www.ncbi.nlm.nih.gov/books/NBK559010/.

20. Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021;49(D1):D10–D17. https://doi.org/10.1093/nar/gkaa892.

21. Forthofer RN, Lee ES, Hernandez M. Biostatistics: A Guide to Design, Analysis and Discovery. 2nd Edition. Academic Press; 2007. 502 p. https://doi.org/10.1016/C2009-0-03861-6.

22. Juhl P, Bay-Jensen AC, Hesselstrand R, Siebuhr AS, Wuttge DM. Type III, IV, and VI Collagens Turnover in Systemic Sclerosis – a Longitudinal Study. Sci Rep. 2020;10(1):7145. https://doi.org/10.1038/s41598-020-64233-8.

23. Dobrota R, Jordan S, Juhl P, Del Papa N, Maurer B, Becker M et al. Dysregulation of circulating collagen turnover markers in very early systemic sclerosis. RMD Open. 2024;10(2):e003306. https://doi.org/10.1136/rmdopen-2023-003306.

24. Oikarinen A. Aging of the skin connective tissue: how to measure the biochemical and mechanical properties of aging dermis. Photodermatol Photoimmunol Photomed. 1994;10(2):47–52. Available at: https://pubmed.ncbi.nlm.nih.gov/8043384/.

25. Reilly DM, Lozano J. Skin collagen through the lifestages: importance for skin health and beauty. Plast Aesthet Res. 2021;8:2. https://doi.org/10.20517/2347-9264.2020.153.

26. Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, Visse R, Nagase H. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 2004;23(15):3020–3030. https://doi.org/10.1038/sj.emboj.7600318.

27. Manka SW, Bihan D, Farndale RW. Structural studies of the MMP-3 interaction with triple-helical collagen introduce new roles for the enzyme in tissue remodelling. Sci Rep. 2019;9(1):18785. https://doi.org/10.1038/s41598-019-55266-9.

28. Al-Nuaimy W, Salloom D. Matrix metalloproteinases-3 (MMP-3) serum level and genetic polymorphisms associated with rheumatoid arthritis. Russian Journal of Infection and Immunity. 2024;14(2):365–370. https://doi.org/10.15789/2220-7619-MMM-17572.

29. Skjøt-Arkil H, Clausen RE, Nguyen QH, Wang Y, Zheng Q, Martinez FJ et al. Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation. BMC Pulm Med. 2012;12:34. https://doi.org/10.1186/1471-2466-12-34.

30. Heinz A. Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol. 2020;55(3):252–273. https://doi.org/10.1080/10409238.2020.1768208.


Review

For citations:


Mezentsev AV, Nevozinskaya ZA, Sobolev VV, Soboleva AG, Potekaev NN, Korsunskaya IM. Secreted matrix metalloproteinases: Study of the expression profiles in the skin affected by scleroderma. Meditsinskiy sovet = Medical Council. 2025;(2):8-15. (In Russ.) https://doi.org/10.21518/ms2025-007

Views: 113


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)