Features of microcirculation in younger schoolchildren in the period of early convalescence of acute respiratory viral infections
https://doi.org/10.21518/ms2025-085
Abstract
Introduction. With insufficient oxygen concentration and changes in the blood circulation of microvessels, the processes of transcapillary gas exchange and the supply of energy substances to tissues deteriorate, which leads to disruption of the mechanisms of vascular autoregulation.
Aim. To study the features of microcirculation in the period of convalescence of ARVI in primary school children who have started classes.
Materials and methods. A prospective comparative study was conducted at the State Budgetary Healthcare Institution “Leningrad City Children’s Hospital No. 1” of the LPR in the period from 2019 to 2024. 246 children aged 7–10 years (average age 8.4 ± 0.5 years) who resumed the educational process after acute respiratory viral infections were examined. Of these, 119 were boys and 127 were girls. Perfusion indices, standard deviation of blood flow oscillation amplitude and variation coefficient were determined depending on the etiology of respiratory disease using laser Doppler flowmetry.
Results. A decrease in the arithmetic mean values of skin perfusion was recorded both immediately after discharge from the hospital (by 23.93 ± 3.71%), and a month later (by 20.58 ± 0.34%) and 2 months later (by 13.9 ± 2.57%) after resumption of school, compared to healthy subjects. The severity of the disorders depended on the pathogen and were more often recorded during the recovery period of COVID-19 and infectious mononucleosis. Prolongation of microcirculatory disorders was recorded up to 5 months after returning to school. The pathological form of microcirculation was determined in 64.41% of children, with the registration of the hyperemic type.
Conclusions. A decrease in perfusion parameters and deviations in perfusion fluctuations were significantly more often observed during the convalescence period after infectious mononucleosis and COVID-19. A decrease in the contribution of active regulatory systems of microcirculation was noted against the background of impaired trophism in tissues.
About the Authors
A. M. LevchinRussian Federation
Artem M. Levchin - Cand. Sci. (Med.), Acting Rector.
1g, Kvartal 50-Letiya Oborony Luganska, Lugansk, Urban District Lugansk, Lugansk People’s Republic, 291045
I. B. Еrshova
Russian Federation
Irina B. Ershova - Dr. Sci. (Med.), Professor, Head of the Department of Pediatrics and Childhood Infections.
1g, Kvartal 50-Letiya Oborony Luganska, Lugansk, Urban District Lugansk, Lugansk People’s Republic, 291045
Yu. V. Glushko
Russian Federation
Yulia V. Glushko - Cand. Sci. (Med.), Assistant Professor, Department of Pediatrics and Childhood Infections.
1g, Kvartal 50-Letiya Oborony Luganska, Lugansk, Urban District Lugansk, Lugansk People’s Republic, 291045
References
1. Umantseva AM, Akhmineeva AKh, Arakelyan RS. A retrospective epidemiological analysis of the incidence of acute respiratory viral infections. International Research Journal. 2021;114(12):25–34. (In Russ.) https://doi.org/10.23670/IRJ.2021.114.12.068.
2. Semenenko TA, Akimkin VG, Burtseva EI, Nozdracheva AV, Simonova EG, Tutelyan AV et al. Characteristics of the Epidemic Situation Associated with Acute Respiratory Viral Infections in the Russian Federation during the Pandemic Spread of COVID-19. Epidemiologiya i Vaktsinoprofilaktika. 2022;21(4):4–15. (In Russ.) https://doi.org/10.31631/2073-3046-2022-21-4-4-15.
3. Saltykova TS, Zhigarlovsky BA, Ivanenko AV, Volkova NA, Antonova VI, Briko NI. Epidemiological characteristics of acute respiratory viral infections and influenza in Russian Federation and Moscow. Jurnal Infektologii. 2019;11(2):124–132. (In Russ.) https://doi.org/10.22625/2072-6732-2019-11-2-124-132.
4. Osidak LV, Dondurey EA, Obraztsova EV, Golovacheva EG, Afanasyeva OI. The structure of morbidity and modern approaches to the treatment of acute respiratory viral infections in children. RMJ. (In Russ.) 2019;3(3):350–358. Available at: https://www.rmj.ru/articles/pediatriya/Struktura_zabolevaemosti_i_sovremennye_podhody_k_terapii_ORVI_u_detey/.
5. Lobzin YuV, Rychkova SV, Uskov AN, Skripchenko NV, Fedorov VV. Current trends in paediatric infections in the Russian Federation. Kuban Scientific Medical Bulletin. 2020;27(4):119–133. (In Russ.) https://doi.org/10.25207/1608-6228-2020-27-4-119-133.
6. Khmelevskaya SA, Zryachkin NM, Mikhailov VE. Clinical-epidemiological peculiarities of acute respiratory infections in children from 3 to 12 years and evaluation of effectiveness of antivirus therapy. Journal Infectology. 2019;11(3):38–45. (In Russ.) https://doi.org/10.22625/2072-6732-2019-11-3-38-45.
7. Chugunova OL. Antiviral therapy of acute respiratory diseases in children. Paediatrician Practice. 2020;(4):6–13. (In Russ.) Available at: https://medi.ru/pp/2020/04/26360.
8. Denisovа AR, Maksimov ML. Acute respiratory viral infections: etiology, diagnosis, modern view on treatment. RMJ. Medical Review. 2018;1(II):99–103. (In Russ.) Available at: https://www.rmj.ru/articles/infektsionnye_bolezni/Ostrye_respiratornye_virusnye_infekcii_etiologiya_diagnostika_sovremennyy_vzglyad_na_lechenie.
9. Migacheva NB. Personalized approach to the management of children with recurrent respiratory infections: clinical experience of a pediatric immunologist. Effective Pharmacotherapy. 2022;18(12):44–50. (In Russ.) https://doi.org/10.33978/2307-3586-2023-18-12-44-50.
10. Chupak EL, Harutyunyan KA, Manukyan AM. Features of children with recurrent respiratory diseases. Amur Medical Journal. 2021;31(1):58–61. (In Russ.) https://doi.org/10.24412/2311-5068-2021-1-58-61.
11. Pasternak G, Lewandowicz-Uszyńska A, Królak-Olejnik B. Recurrent respiratory tract infections in children. Pol Merkur Lekarski. 2020;49(286):260–266. Available at: https://pubmed.ncbi.nlm.nih.gov/32827422.
12. Mazankova LN, Samitova ER, Osmanov IM, Afukov II, Akimkin VG, Antsupova MA et al. COVID-19 and comorbidities in children. Clinical Practice in Pediatrics. 2022;17(1):16–23. (In Russ.) https://doi.org/10.20953/1817-7646-2022-1-16-23.
13. Khakimzhanova AS kizi. Age features of the physiology of the respiratory system. Eastern European Scientific Journal. 2022;79(3):26–29. (In Russ.) Available at: https://cyberleninka.ru/article/n/vozrastnye-ossobennostifiziologii-dyhatelnoy-sistemy.
14. Serebrennikova SN, Seminskiy IZh, Guzovskaya EV, Gutsol LO. Inflammation аs a fundamental pathological process: lecture 1 (Alteration, vascular reactions). Baikal Medical Journal. 2023;2(2):53–64. (In Russ.) https://doi.org/10.57256/2949-0715-2023-2-53-64.
15. Dvorakovskaya IV, Titova ON, Ariel BM, Platonova IS, Volchkov VA, Kuzubova NA. Pathological anatomy of vascular lesions in influenza and viral-bacterial pneumonia. RMJ. (In Russ.) 2021;(3):3–7. Available at: https://www.rmj.ru/articles/infektsionnye_bolezni/Patologicheskaya_anatomiya_poragheniya_sosudov_pri_grippe_i_virusno-bakterialynoy_pnevmonii.
16. Zolotovskaya IA, Shatskaya PR, Davydkin IL. Мain characteristics of microcirculation parameters in patients whо underwent COVID-19. Profilakticheskaya Meditsina. 2020;23(7):56–62. (In Russ.) https://doi.org/10.17116/profmed20202307156.
17. Mikheeva IG, Kurasova OB, Milekhina MYu, Moiseev AB, Kuznetsova NI, Kalinovskaya II et al. Analysis of the state of the microvascular bed and planning of rehabilitation measures in children after a new coronavirus infection. Russian Journal of Woman and Child Health. 2024;7(2):171–176. (In Russ.) https://doi.org/10.32364/2618-8430-2024-7-2-13.
18. Zolotnitskaya VP, Titova ON, Kuzubova NA., Amosova OV, Speranskaya AA. Changes in pulmonary microcirculation after COVID-19. Pulmonologiya. 2021;31(5):588–597. (In Russ.) https://doi.org/10.18093/0869-0189-2021-31-5-588-597.
19. Borch L, Holm M, Knudsen M, Ellermann-Eriksen S, Hagstroem S. Long COVID symptoms and duration in SARS-CoV-2 positiv children – a nationwide cohort study. Eur J Pediatr. 2022;181(4):1597–1607. https://doi.org/10.1007/s00431-021-04345-z.
20. Ladozhskaya-Gapeenko EE, Khrapov KN, Polushin YuS, Shlyk IV, Petrishchev NN, Vartanova IV. Microcirculation disorders in patients with severe COVID-19. Messenger of Anesthesiology and Resuscitation. (In Russ.) 2021;18(4):7–19. https://doi.org/10.21292/2078-5658-2021-18-4-7-19.
21. Маколкин ВИ. Микроциркуляция в кардиологии М.: Визарт; 2004. 135 с.
22. Лелюк ВГ, Лелюк СЭ. Ультразвуковая ангиология. М.: Реальное время; 2003. 324 с.
23. Chuyan EN, Tribrat NS. Methodological aspects of the application of the laser Doppler flowmetry method. Uchenye Zapiski Tavricheskogo Natsionalʹnogo Universiteta im. V.I. Vernadskogo. (In Russ.) 2008;60(21):156–171.
24. Крупаткин АИ, Сидоров ВВ. Лазерная допплеровская флоуметрия микроциркуляции крови. М.: Медицина; 2005. 254 с.
25. Baranova EA, Vinogradova VV, Gavrilova EYu, Miftakhova DZ, Mukhamadieva DK. Factors affecting the level of linear blood flow velocity during ultrasound examination of cerebral hemodynamics. Russian Journal of Cardiology. 2022;27(5S):3–69. (In Russ.) https://doi.org/10.15829/15604071-2022-5S.
26. Roganova IV. Mathematical modeling of changes in the main hemodynamic parameters depending on the set of microcirculation indicators in influenza. Bulletin of the Medical Institute “REAVIZ”: Rehabilitation, Doctor and Health. 2019;37(1):155–159. (In Russ.) Available at: https://www.elibrary.ru/gisawp.
27. Kirichenko AA. Acute respiratory viral infections and the heart. Consilium Medicum. 2020;22(5):22–27. (In Russ.) https://doi.org/10.26442/20751753.2020.5.200136.
Review
For citations:
Levchin AM, Еrshova IB, Glushko YV. Features of microcirculation in younger schoolchildren in the period of early convalescence of acute respiratory viral infections. Meditsinskiy sovet = Medical Council. 2025;(1):246-253. (In Russ.) https://doi.org/10.21518/ms2025-085