Preview

Meditsinskiy sovet = Medical Council

Advanced search

GABAergic system – physiological role and clinical significance

https://doi.org/10.21518/ms2025-106

Abstract

This work presents a review of the literature using the elibrary.ru, CyberLeninka, PubMed, Scopus and Google Scholar databases with the key terms “Gamma-aminobutyric acid (GABA)”, “GABA agonists”, “GABA antagonists”, “GABA pathophysiology”, “children and adolescents”. The information obtained was analyzed, systematized and presented in three sections: general aspects of GABA, pathophysiology of GABA and GABAergic pharmacology and therapy. Currently, three types of GABA receptors have been identified: two fast-acting GABA-A and GABA-C and one slow-acting GABA-B. GABA is a neurotransmitter and neuromodulator of the autonomic nervous system, a hormone and trophic factor in endocrine organs, including the pituitary gland, pancreas, adrenal glands, uterus, ovaries, placenta and testes. Disturbance of GABA signaling is a pathophysiological link in diseases of the cardiovascular system, gastrointestinal tract, endocrine diseases (diabetes mellitus, diseases of the adrenal glands and reproductive organs). The GABA system of the autonomic nervous, endocrine and immune systems is being intensively studied for drug treatment of functional disorders of these systems. GABA acts not only as a neurotransmitter, its role as a neurohormone, trophic factor and immunomodulator has been established, which makes it a multifunctional molecule. In neurology, GABAergic drugs are used to treat paroxysmal disorders, including periodic syndromes of childhood, sleep disorders, complications of alcoholism, spasticity, acute and chronic pain, anxiety disorders and depression. The authors consider the therapeutic possibilities of aminophenylbutyric acid hydrochloride and its encapsulated form (Anvifen) in the treatment of neurological disorders and especially in pediatric practice. In view of the restrictions on the use of antidepressants and anxiolytics in children and adolescents, aminophenylbutyric acid hydrochloride is an effective and safe drug of choice in pediatric practice. The authors present the results of clinical observations of the drug’s effectiveness and safety.

About the Authors

O. R. Esin
Kazan Federal University; Otorhinolaryngology Clinic LLC
Russian Federation

Oleg R. Esin - Cand. Sci. (Med.), Associate Professor of Department of Neurology with Psychiatry, Clinical Psychology and Medical Genetics Courses, Kazan Federal University; Neurologist, Otorhinolaryngology Clinic LLC.

18, Kremlyovskaya St., Kazan, 420008; 12, Daurskaya St., Kazan, 420059



A. I. Mashtakova
Kazan Federal University
Russian Federation

Aleksandra I. Mashtakova - Clinical Resident of Department of Neurology with Psychiatry, Clinical Psychology and Medical Genetics Courses.

18, Kremlyovskaya St., Kazan, 420008



R. G. Esin
Kazan Federal University; Kazan State Medical Academy – a branch of the Russian Medical Academy of Continuing Professional Education
Russian Federation

Radiy G. Esin - Professor of Department of Neurology with Psychiatry, Clinical Psychology and Medical Genetics Courses, Kazan Federal University; Professor of Department of Neurology, Kazan SMA – a branch of the RMA of Continuing Professional Education.

18, Kremlyovskaya St., Kazan, 420008; 36, Butlerov St., Kazan, 420012



References

1. Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med. 2021;246(9):1069–1083. https://doi.org/10.1177/1535370221989263.

2. Vargas RA. The GABAergic System: An Overview of Physiology, Physiopathology and Therapeutics. Int J Clin Pharmacol Pharmacother. 2018;3:142. https://doi.org/10.15344/2456-3501/2018/142.

3. Gladkevich A, Korf J, Hakobyan VP, Melkonyan KV. The peripheral GABAergic system as a target in endocrine disorders. Auton Neurosci. 2006;124(1-2):1–8. https://doi.org/10.1016/j.autneu.2005.11.002.

4. Frølund B, Ebert B, Kristiansen U, Liljefors T, Krogsgaard-Larsen P. GABA(A) receptor ligands and their therapeutic potentials. Curr Top Med Chem. 2002;2(8):817–832. https://doi.org/10.2174/1568026023393525.

5. Hepsomali P, Groeger JA, Nishihira J, Scholey A. Effects of Oral GammaAminobutyric Acid (GABA) Administration on Stress and Sleep in Humans: A Systematic Review. Front Neurosci. 2020;14:923. https://doi.org/10.3389/fnins.2020.00923

6. Tian J, Kaufman DL. The GABA and GABA-Receptor System in Inflammation, Anti-Tumor Immune Responses, and COVID-19. Biomedicines. 2023;11(2):254. https://doi.org/10.3390/biomedicines11020254.

7. Chebib M, Hanrahan JR, Mewett KN, Duke RK, Johnston GAR. Ionotropic GABA Receptors as Therapeutic Targets for Memory and Sleep Disorders. Annu Rep Med Chem. 2004;39:13–23. http://doi.org/10.1016/s00657743(04)39002-0.

8. Koval’zon VM, Dolgikh VV. Regulation of sleep – wakefulness cycle. Nevrologicheskii Zhurnal. 2016;21(6):316–322. (In Russ.) http://doi.org/10.18821/1560-9545-2016-21-6-316-322.

9. Medic G, Wille M, Hemels ME. Shortand long-term health consequences of sleep disruption. Nat Sci Sleep. 2017;9:151–161. https://doi.org/10.2147/NSS.S134864.

10. Baranwal N, Yu PK, Siegel NS. Sleep physiology, pathophysiology, and sleep hygiene. Prog Cardiovasc Dis. 2023;77:59–69. https://doi.org/10.1016/j.pcad.2023.02.005.

11. Pizova NV. Insomnia in elderly persons. Meditsinskiy Sovet. 2016;(17):34–37. (In Russ.) https://doi.org/10.21518/2079-701X-2016-17-34-37.

12. Calhoun SL, Fernandez-Mendoza J, Vgontzas AN, Liao D, Bixler EO. Prevalence of insomnia symptoms in a general population sample of young children and preadolescents: gender effects. Sleep Med. 2014;15(1):91–95. https://doi.org/10.1016/j.sleep.2013.08.787.

13. Kelmanson IA. Trait and state anxiety, symptoms of insomnia and their influence on daytime functioning in adolescent girls. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2024;124(5-2):66–71. (In Russ.) https://doi.org/10.17116/jnevro202412405266.

14. Falch-Madsen J, Wichstrøm L, Pallesen S, Steinsbekk S. Prevalence and stability of insomnia from preschool to early adolescence: a prospective cohort study in Norway. BMJ Paediatr Open. 2020;4(1):e000660. https://doi.org/10.1136/bmjpo-2020-000660.

15. Park S, Kang I, Edden RAE, Namgung E, Kim J, Kim J. Shorter sleep duration is associated with lower GABA levels in the anterior cingulate cortex. Sleep Med. 2020;71:1–7. https://doi.org/10.1016/j.sleep.2020.02.018.

16. Tokatly Latzer I, Yang E, Afacan O, Arning E, Rotenberg A, Lee HHC et al. Glymphatic dysfunction coincides with lower GABA levels and sleep disturbances in succinic semialdehyde dehydrogenase deficiency. J Sleep Res. 2024;33(4):e14105. https://doi.org/10.1111/jsr.14105.

17. Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Elewa YHA, Al-Farga A, Aqlan F et al. Sleep disorders cause Parkinson’s disease or the reverse is true: Good GABA good night. CNS Neurosci Ther. 2024;30(3):e14521. https://doi.org/10.1111/cns.14521.

18. Tyurenkov IN, Faibisovich TI, Bakulin DA. Synergistic effects of GABA and hypoglycemic drugs. Problemy Endokrinologii. 2023;69(4):61–69. (In Russ.) https://doi.org/10.14341/probl13257.

19. Rabinovitch A, Koshelev D, Lagunas-Rangel FA, Kosheleva L, Gavra T, Schiöth HB, Levit S. Efficacy of combination therapy with GABA, a DPP-4i and a PPI as an adjunct to insulin therapy in patients with type 1 diabetes. Front Endocrinol. 2023;14:1171886. https://doi.org/10.3389/fendo.2023.1171886.

20. Hosseini Dastgerdi A, Sharifi M, Soltani N. GABA administration improves liver function and insulin resistance in offspring of type 2 diabetic rats. Sci Rep. 2021;11(1):23155. https://doi.org/10.1038/s41598021-02324-w.

21. Mishunina TM. Components of the hamkergic system and its function in the endocrine glands. Problemy Endokrinologii. 2004;50(2):15–23. (In Russ.) https://doi.org/10.14341/probl11388.

22. Walsh JM, Bowery NG, Brown DA, Clark JB. Metabolism of gammaaminobutyric acid (GABA) by peripheral nervous tissue. J Neurochem. 1974;22(6):1145–1147. https://doi.org/10.1111/j.1471-4159.1974.tb04350.x.

23. Bhat R, Axtell R, Mitra A, Miranda M, Lock C, Tsien RW, Steinman L. Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci USA. 2010;107(6):2580–2585. https://doi.org/10.1073/pnas.0915139107.

24. Nayak AP, An SS. Anxiolytics for Bronchodilation: Refinements to GABAA Agonists for Asthma Relief. Am J Respir Cell Mol Biol. 2022;67(4):419–420. https://doi.org/10.1165/rcmb.2022-0287ED.

25. Forkuo GS, Nieman AN, Yuan NY, Kodali R, Yu OB, Zahn NM et al. Alleviation of Multiple Asthmatic Pathologic Features with Orally Available and Subtype Selective GABAA Receptor Modulators. Mol Pharm. 2017;14(6):2088–2098. https://doi.org/10.1021/acs.molpharmaceut.7b00183.

26. Sheludko EG, Naumov DE. GABA and its role in the regulation of the airway tone. Bulletin Physiology and Pathology of Respiration. 2020;(76):97–106. (In Russ.) https://doi.org/10.36604/1998-5029-2020-76-97-106.

27. Nayak AP, An SS. Anxiolytics for Bronchodilation: Refinements to GABAA Agonists for Asthma Relief. Am J Respir Cell Mol Biol. 2022;67(4):419–420. https://doi.org/10.1165/rcmb.2022-0287ED.

28. Tyurenkov IN, Samotrueva MA, Serezhnikova TK. GABA-ergic system and gaba-based drugs for regulation of immunogenesis. Eksperimental’naya i Klinicheskaya Farmakologiya. 2011;74(11):36–42. (In Russ.) Available at: http://www.ekf.folium.ru/index.php/ekf/article/view/436.

29. Zuppichini MD, Hamlin AM, Zhou Q, Kim E, Rajagopal S, Beltz AM, Polk TA. GABA levels decline with age: A longitudinal study. Imaging Neuroscience. 2024;2:1–15. https://doi.org/10.1162/imag_a_00224.

30. Novak TS, McGregor KM, Krishnamurthy LC, Evancho A, Mammino K, Walters CE Jr et al. GABA, Aging and Exercise: Functional and Intervention Considerations. Neurosci Insights. 2024;19:26331055241285880. https://doi.org/10.1177/26331055241285880.

31. Tyurenkov IN, Bakulin DA, Smirnov AV, Ekova MR, Bisinbekova AI, Snigur GL et al. Neuroprotective properties of GABA and its derivatives in diabetic encephalopathy in old animals. Farmatsiya i Farmakologiya. 2023;11(3):211–227. (In Russ.) https://doi.org/10.19163/2307-9266-2023-11-3-211-227.

32. Krantis A. GABA in the Mammalian Enteric Nervous System. News Physiol Sci. 2000;15:284–290. https://doi.org/10.1152/physiologyonline.2000.15.6.284.

33. Bhargava KP, Gupta GP, Gupta MB. Central GABA-ergic mechanism in stress-induced gastric ulceration. Br J Pharmacol. 1985;84(3):619–623. https://doi.org/10.1111/j.1476-5381.1985.tb16141.x.

34. Collares EF, Vinagre AM. Effect of the GABAB agonist baclofen on dipyrone-induced delayed gastric emptying in rats. Braz J Med Biol Res. 2005;38(1):99–104. https://doi.org/10.1590/s0100-879x2005000100015.

35. Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G et al. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biol Psychiatry. 2017;82(7):472–487. https://doi.org/10.1016/j.biopsych.2016.12.031.

36. Dinan TG, Cryan JF. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol Clin North Am. 2017;46(1):77–89. https://doi.org/10.1016/j.gtc.2016.09.007.

37. Kelly JR, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbiota axis: challenges for translation in psychiatry. Ann Epidemiol. 2016;26(5):366–372. https://doi.org/10.1016/j.annepidem.2016.02.008.

38. Braga JD, Thongngam M, Kumrungsee T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut-brain axis. NPJ Sci Food. 2024;8(1):16. https://doi.org/10.1038/s41538-024-00253-2.

39. Jessen KR, Hills JM, Limbrick AR. GABA immunoreactivity and 3H-GABA uptake in mucosal epithelial cells of the rat stomach. Gut. 1988;29(11):1549–1556. https://doi.org/10.1136/gut.29.11.1549.

40. Gillis RA, Dezfuli G, Bellusci L, Vicini S, Sahibzada N. Brainstem Neuronal Circuitries Controlling Gastric Tonic and Phasic Contractions: A Review. Cell Mol Neurobiol. 2022;42(2):333–360. https://doi.org/10.1007/s10571-021-01084-5.

41. Tropskaya NS, Gurman YV, Popova TS, Kanibolotsky AA. Gastroprotective Effect of GABA in Metabolic Stress. Bull Exp Biol Med. 2024;177(3):301–306. https://doi.org/10.1007/s10517-024-06178-w.

42. Xie M, Chen H, Nie S, Tong W, Yin J, Xie M. Gastroprotective effect of gamma-aminobutyric acid against ethanol-induced gastric mucosal injury. Chem Biol Interact. 2017;272:125–134. https://doi.org/10.1016/j.cbi.2017.04.022.

43. Saxena B, Singh S. Investigations on gastroprotective effect of citalopram, an antidepressant drug against stress and pyloric ligation induced ulcers. Pharmacol Rep. 2011;63(6):1413–1426. https://doi.org/10.1016/s17341140(11)70705-8.

44. Saxena B, Krishnamurthy S, Singh S. Gastroprotective potential of risperidone, an atypical antipsychotic, against stress and pyloric ligation induced gastric lesions. Chem Biol Interact. 2011;190(2-3):155–164. https://doi.org/10.1016/j.cbi.2011.02.002.

45. Perfilova VN, Tjurenkov IN, Ostrovskiy ОV, Popova ТА, Mokrousov IS, Shubnikova EV. Mitochondrial dysfunction correction with GABAagents. Volgogradskij Nauchno-Medicinskij Zhurnal. 2010;(3):21–23. (In Russ.) Available at: https://journal.gbuvmnc.ru/files/uploads/journal/1286528507-bulletin-2010-3-762.pdf.

46. Martins-Marques T. Cardioprotective role of GABA-B receptor activation on ventricular arrhythmia following myocardial infarction. Rev Port Cardiol. 2023;42(2):137–138. https://doi.org/10.1016/j.repc.2022.10.005.

47. Liu Q, Li Y, Shi Y, Tan J, Yan W, Zhang J et al. The protective effect of gamma aminobutyric acid B receptor activation on sympathetic nerve remodeling via the regulation of M2 macrophage polarization after myocardial infarction. Rev Port Cardiol. 2023;42(2):125–135. https://doi.org/10.1016/j.repc.2021.10.011.

48. Parsa H, Faghihi M, Kardar GA, Imani A. Acute sleep deprivation induces cardioprotection against ischemia/reperfusion injury through reducing inflammatory responses: the role of central GABA-A receptors. Gen Physiol Biophys. 2018;37(3):345–352. https://doi.org/10.4149/gpb_2017049.

49. Kustova MV, Prokofiev II, Perfilova VN, Muzyko EA, Zavadskaya VE, Varlamova SV et al. The role of iNOS inhibition in the mechanism of the cardioprotective effect of new GABA and glutamic acid derivatives in the model of acute alcoholic myocardial injury in rats. Biomeditsinskaya Khimiya. 2023;69(2):112–124. (In Russ.) https://doi.org/10.18097/PBMC20236902112.

50. Perucca E, White HS, Bialer M. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: II. Treatments in Clinical Development. CNS Drugs. 2023;37(9):781–795. https://doi.org/10.1007/s40263-02301025-4.

51. Pehrson AL, Sanchez C. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des Devel Ther. 2015;9:603–624. https://doi.org/10.2147/DDDT.S62912.

52. Kalueff AV, Nutt DJ. Role of GABA in anxiety and depression. Depress Anxiety. 2007;24(7):495–517. https://doi.org/10.1002/da.20262.

53. Felice D, Cryan JF, O’Leary OF. GABAB Receptors: Anxiety and Mood Disorders. Curr Top Behav Neurosci. 2022;52:241–265. https://doi.org/10.1007/7854_2020_171.

54. Roberto M, Varodayan FP. Synaptic targets: Chronic alcohol actions. Neuropharmacology. 2017;122:85–99. https://doi.org/10.1016/j.neuropharm.2017.01.013.

55. de Sousa N, Santos D, Monteiro S, Silva N, Barreiro-Iglesias A, Salgado AJ. Role of Baclofen in Modulating Spasticity and Neuroprotection in Spinal Cord Injury. J Neurotrauma. 2022;39(3-4):249–258. https://doi.org/10.1089/neu.2020.7591.

56. Benke D. GABAB Receptors and Pain. Curr Top Behav Neurosci. 2022;52:213–239. https://doi.org/10.1007/7854_2020_130.

57. Luo Y, Kusay AS, Jiang T, Chebib M, Balle T. Delta-containing GABAA receptors in pain management: Promising targets for novel analgesics. Neuropharmacology. 2021;195:108675. https://doi.org/10.1016/j.neuropharm.2021.108675.

58. Thompson SM. Modulators of GABAA receptor-mediated inhibition in the treatment of neuropsychiatric disorders: past, present, and future. Neuropsychopharmacology. 2024;49(1):83–95. https://doi.org/10.1038/s41386-023-01728-8.

59. Rapee RM, Creswell C, Kendall PC, Pine DS, Waters AM. Anxiety disorders in children and adolescents: A summary and overview of the literature. Behav Res Ther. 2023;168:104376. https://doi.org/10.1016/j.brat.2023.104376.

60. Ghandour RM, Sherman LJ, Vladutiu CJ, Ali MM, Lynch SE, Bitsko RH, Blumberg SJ. Prevalence and treatment of depression, anxiety, and conduct problems in US children. J Pediatr. 2019;206:256–267.e3. https://doi.org/10.1016/j.jpeds.2018.09.021.

61. Polanczyk GV, Salum GA, Sugaya LS, Caye A, Rohde LA. Annual research review: a meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J Child Psychol Psychiatry. 2015;56(3):345–365.

62. Walter HJ, Bukstein OG, Abright AR, Keable H, Ramtekkar U, Ripperger-Suhler J, Rockhill C. Clinical practice guideline for the assessment and treatment of children and adolescents with anxiety disorders. J Am Acad Child Adolesc Psychiatry. 2020;59(10):1107–1124. https://doi.org/10.1111/jcpp.12381.

63. Kowalchuk A, Gonzalez SJ, Zoorob RJ. Anxiety Disorders in Children and Adolescents. Am Fam Physician. 2022;106(6):657–664. Available at: https://pubmed.ncbi.nlm.nih.gov/36521463.

64. Zavadenko NN, Nesterovskiy YuE, Zavadenko AN, Shypilova EM. Anxiety disorders as comorbid conditions in neuropsychiatric diseases in children. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2024;124(7):56–64. (In Russ.) https://doi.org/10.17116/jnevro202412407156.

65. Felice D, Cryan JF, O’Leary OF. GABAB Receptors: Anxiety and Mood Disorders. Curr Top Behav Neurosci. 2022;52:241–265. https://doi.org/10.1007/7854_2020_171.

66. Oishi Y, Saito YC, Sakurai T. GABAergic modulation of sleep-wake states. Pharmacol Ther. 2023;249:108505. https://doi.org/10.1016/j.pharmthera.2023.108505.

67. Wehry AM, Beesdo-Baum K, Hennelly MM, Connolly SD, Strawn JR. Assessment and treatment of anxiety disorders in children and adolescents. Curr Psychiatry Rep. 2015;17(7):52. https://doi.org/10.1007/s11920015-0591-z.

68. Wang Z, Whiteside SPH, Sim L, Farah W, Morrow AS, Alsawas M, Barrionuevo P et al. Comparative Effectiveness and Safety of Cognitive Behavioral Therapy and Pharmacotherapy for Childhood Anxiety Disorders: A Systematic Review and Meta-analysis. JAMA Pediatr. 2018;172(10):992. https://doi.org/10.1001/jamapediatrics.2017.3036.

69. Esin RG, Esin OR, Khakimova AR. Effective neuroprotection and organ protection: activation of the endogenous mechanisms of sanogenesis. Neurology, Neuropsychiatry, Psychosomatics. 2020;12(3):123–127. (In Russ.) https://doi.org/10.14412/2074-2711-2020-3-123-127.

70. Esin OR, Khayrullin IKh, Esin RG, Malova LA. The effectiveness of short and prolonged course treatment of anxiety with Anvifen. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2022;122(12):68–73. (In Russ.). https://doi.org/10.17116/jnevro202212212168.

71. Esin RG, Khayrullin IKh, Esin OR, Malova LA, Alimbekova LR. Effectiveness of the anxiolytic Anvifen in the treatment of post-COVID brain fog. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2022;122(8):101–105. (In Russ.) https://doi.org/10.17116/jnevro2022122081101.

72. Esin OR, Khairullin IK, Esin RG, Tokareva NV. Tension type headache: GABA-ergic drug anvifen efficacy. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2016;116(2):58–61. (In Russ.) https://doi.org/10.17116/jnevro20161162158-61.

73. Esin RG, Khairullin IK, Mukhametova ER, Esin OR. Persistent postural perceptual dizziness. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2017;117(4):28–33. (In Russ.) https://doi.org/10.17116/jnevro20171174128-33.

74. Esin RG, Esin OR, Shamsutdinova RF. Current approaches to disadaptative (psychovegetative) disorders correctionin children and adolescents with tension-type headache. Pediatriya – Zhurnal im. G.N. Speranskogo. 2015;94(1):106–112. (In Russ.) Available at: https://pediatriajournal.ru/archive?show=344§ion=4204.

75. Esin OR. Treatment of Tension-Type Headaches in Adolescents (14–15 Years Old): the Efficacy of Aminophenylbutyric Acid Hydrochloride. Bio Nano Science. 2018;8(1):418–422. https://doi.org/10.1007/s12668-018-0507-6.

76. Zykov VP, Komarova IB. The possibility of using aminophenylbutyric acid in the practice of a pediatric neurologist. RMJ. 2013;24(7):1166–1168. (In Russ.) Available at: https://www.rmj.ru/articles/pediatriya/Vozmoghnosty_ispolyzovaniya_aminofenilmaslyanoy_kisloty_v_praktike_detskogo_nevrologa..

77. Lukushkina EF, Karpovich EI, Chaban OD. Amino-phenylbutyric acid (Anvifen): clinical and pharmacological aspects and experience in pediatric neurology. RMJ. 2014;(3):228–231. (In Russ.) Available at: https://www.rmj.ru/articles/obshchie-stati/Aminofenilmaslyanaya_kislota_Anvifen_kliniko-farmakologicheskie_aspekty_i_opyt_primeneniya_v_detskoy_nevrologii/.

78. Esin OR, Esin RG, Khairullin IKh. Anxiety in children and adolescents with primary headaches: diagnosis and treatment options. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2022;122(9-2):46–50. (In Russ.) https://doi.org/10.17116/jnevro202212209246.

79. Karkischenko NN, Karkischenko VN, Fokin YuV, Taboyakova LA, Alimkina OV, Borisova MM. Between Cognitivity and Neuropathies: Neuroimaging of the Effects of GABAergic Modulation of the Hippocampus and Prefrontal Neocortexis by Normalized Brain Electrograms. Journal Biomed. 2020;(2):12–38. (In Russ.) https://doi.org/10.33647/2074-5982-16-2-12-38.


Review

For citations:


Esin OR, Mashtakova AI, Esin RG. GABAergic system – physiological role and clinical significance. Meditsinskiy sovet = Medical Council. 2025;(3):118-126. (In Russ.) https://doi.org/10.21518/ms2025-106

Views: 142


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)