Biologically active food additives in stress-related menstrual cycle disorders
https://doi.org/10.21518/ms2025-167
Abstract
Stress-related menstrual cycle disorders (MCDs) is a common reason for seeking gynecological care. Due to their functional origin, MCDs need better adaptive reserve restoration rather than hormonal intervention, at least at the first stage of treatment. Resistance against the action of stressors and predisposition to develop stress-related disorders are determined by genetic and modifiable factors, not least of which is the nutritional status of individuals. The nutritional status can be corrected by a wide use of vitamins, minerals and plant extracts with antioxidant effects and properties regulating neuroendocrine response to stress. Such nutrient substances may be administered in accordance with the physiological needs of the follicular/ proliferative and luteal/secretory phases of the menstrual cycle. Biologically active food additives derived from foods contribute to the development of a systemic neurohormonal response and cell adaptation to stress. They have comprehensive and multidirectional effects, which are important for the proper functioning of the reproductive system. Alternative or supplemental products are increasingly used in the therapy of any and all diseases and pathological conditions. Short-term menstrual cycle disorders such as oligomenorrhea or high variability in cycle length due to stress factors can be resolved in the context of therapeutic lifestyle modification using biologically active food additives with antioxidants and adaptogenic effects without additional prescription of hormone therapy. Biologically active food additives can be used as supplemental non-medicinal products as part of complex therapy in other menstrual cycle disorders or endocrine diseases.
About the Authors
I. V. KuznetsovaRussian Federation
Irina V. Kuznetsova, Dr. Sci. (Med.), Professor, Deputy Director General for Research and Development
8, Novorogorskaya St., Moscow, 109544
T. V. Kochemasova
Russian Federation
Tatiana V. Kochemasova, Cand. Sci. (Med.)
References
1. Volel BA, Ragimova AA, Kuznetsova IV, Burchakov DI. Modern concepts of stress-dependent menstrual cycle disorders. Akusherstvo i Ginekologiya (Russian Federation). 2016;(12):34–40. (In Russ.) https://doi.org/10.18565/aig.2016.12.34-40.
2. Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamicpituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress. 2017;20(5):476–494. https://doi.org/10.1080/10253890.2017.1369523.
3. Borisenko MYu, Petetskaya US, Uvarova EV, Agarkov VA, Bronfman SA, Sherina TF. Violation of gender identity adolescent girls with secondary amenorrhea. Journal of New Medical Technologies. 2016;(4):281–288. (In Russ.) Available at: http://vnmt.ru/Bulletin/E2016-4/7-9.pdf.
4. Yang L, Zhao Y, Wang Y, Liu L, Zhang X, Li B, Cui R. The Effects of Psychological Stress on Depression. Curr Neuropharmacol. 2015;13(4):494–504. https://doi.org/10.2174/1570159x1304150831150507.
5. Babenko VN, Smagin DA, Galyamina AG, Kovalenko IL, Kudryavtseva NN. Altered Slc25 family gene expression as markers of mitochondrial dysfunction in brain regions under experimental mixed anxiety/depressionlike disorder. BMC Neurosci. 2018;19(1):79. https://doi.org/10.1186/s12868-018-0480-6.
6. Khashchenko EP, Uvarova EV, Baranova AV, Vysokykh MYu, Salnikova IA. Psychoemotional wellbeing of adolescent girls with reproductive disorders with regard to neuroendocrine factors. Pediatric and Adolescent Reproductive Health. 2019;15(1):41–50. (In Russ.) https://doi.org/10.24411/1816-2134-2019-11006.
7. Stárka L, Dušková M, Hill M. Dehydroepiandrosterone: a neuroactive steroid. J Steroid Biochem Mol Biol. 2015;145:254–260. https://doi.org/10.1016/j.jsbmb.2014.03.008.
8. Rakhmanov RS, Piskarev YuG, Blinova TV, Sapozhnikova MA, Bakhmudov NG, Istomin AV, Tarasov AV. Evaluation of vitamin-minerals saturation in human organism during physical and neuro-emotional loads. Public Health and Life Environment – PH&LE. 2016;(4):11–15. (In Russ.) Available at: https://www.elibrary.ru/vsppaz.
9. Никитюк ДБ, Погожева АВ, Шарафетдинов ФФ, Батурин АК, Богданов АР, Гаппарова КМ и др. Стандарты лечебного питания. М.; 2017. 313 с. Режим доступа: https://apicr.minzdrav.gov.ru/Files/recomend/МР100.PDF.
10. Dudareva VA. Stress and nutrition: chronic fatigue syndrome and other stress-related conditions. Therapist’s Bulletin. 2018;(9):51–58. (In Russ.) Available at: https://journaltherapy.ru/statyi/stress-i-pitanie-sindromhronicheskoj-ustalosti-i-drugie-associirovannye-so-stressom-sostojanija.
11. Kodentsova VM, Vrzhesinskaya ОА, Risnik DV, Nikityuk DB, Tutelyan VA. Micronutrient status of population of the Russian Federation and possibility of its correction. State of the problem. Voprosy Pitaniia. 2017;86(4):113–124. (In Russ.) https://doi.org/10.24411/0042-8833-2017-00067.
12. Kodentsova VM, Risnik DV. Vitamin and mineral complexes: rational use in therapy. Therapist’s Bulletin. 2018;(9):40–50. (In Russ.) Available at: https://journaltherapy.ru/statyi/vitaminno-mineralnye-kompleksy-racionalnoeprimenenie-v-terapii.
13. Kodentsova VM, Risnik DV. Vitamin-mineral supplements for correction of multiple micronutrient deficiency. Meditsinskiy Sovet. 2020;(11):192–200. (In Russ.) https://doi.org/10.21518/2079-701X-2020-11-192-200.
14. Barnes LAJ, Barclay L, McCaffery K, Aslani P. Women’s health literacy and the complex decision-making process to use complementary medicine products in pregnancy and lactation. Health Expect. 2019;22(5):1013–1027. https://doi.org/10.1111/hex.12910.
15. Johnson PJ, Kozhimannil KB, Jou J, Ghildayal N, Rockwood TH. Complementary and Alternative Medicine Use among Women of Reproductive Age in the United States. Womens Health Issues. 2016;26(1):40–47. https://doi.org/10.1016/j.whi.2015.08.009.
16. Meier-Girard D, Lüthi E, Rodondi PY, Wolf U. Prevalence, specific and nonspecific determinants of complementary medicine use in Switzerland: Data from the 2017 Swiss Health Survey. PLoS ONE. 2022;17(9):e0274334. https://doi.org/10.1371/journal.pone.0274334.
17. Moini Jazani A, Nasimi Doost Azgomi H, Nasimi Doost Azgomi A, Nasimi Doost Azgomi R. A comprehensive review of clinical studies with herbal medicine on polycystic ovary syndrome (PCOS). Daru. 2019;27(2):863–877. https://doi.org/10.1007/s40199-019-00312-0.
18. Steel A, Munk N, Wardle J, Adams J, Sibbritt D, Lauche R. Generational differences in complementary medicine use in young Australian women: Repeated cross-sectional dataset analysis from the Australian longitudinal study on women’s health. Complement Ther Med. 2019;43:66–72. https://doi.org/10.1016/j.ctim.2019.01.009.
19. Dauvermann MR, Lee G, Dawson N. Glutamatergic regulation of cognition and functional brain connectivity: insights from pharmacological, genetic and translational schizophrenia research. Br J Pharmacol. 2017;174(19):3136–3160. https://doi.org/10.1111/bph.13919.
20. Duman RS, Sanacora G, Krystal JH. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron. 2019;102(1):75–90. https://doi.org/10.1016/j.neuron.2019.03.013.
21. Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC, Zarate CAJr. Glutamate and Gamma-Aminobutyric Acid Systems in the Pathophysiology of Major Depression and Antidepressant Response to Ketamine. Biol Psychiatry. 2017; 81(10):886–897. https://doi.org/10.1016/j.biopsych.2016.05.005.
22. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22(3):238–249. https://doi.org/10.1038/nm.4050.
23. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, Nasca C. Mechanisms of stress in the brain. Nat Neurosci. 2015;18(10):1353–1363. https://doi.org/10.1038/nn.4086.
24. Guerriero RM, Giza CC, Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep. 2015;15(5):27. https://doi.org/10.1007/s11910-015-0545-1.
25. Ntali G, Tsagarakis S. Traumatic brain injury induced neuroendocrine changes: acute hormonal changes of anterior pituitary function. Pituitary. 2019;22(3):283–295. https://doi.org/10.1007/s11102-019-00944-0.
26. Fortress AM, Avcu P, Wagner AK, Dixon CE, Pang KC. Experimental traumatic brain injury results in estrous cycle disruption, neurobehavioral deficits, and impaired GSK3β/β-catenin signaling in female rats. Exp Neurol. 2019;315:42–51. https://doi.org/10.1016/j.expneurol.2019.01.017.
27. Snook ML, Henry LC, Sanfilippo JS, Zeleznik AJ, Kontos AP. Association of concussion with abnormal menstrual patterns in adolescent and young women. JAMA Pediatr. 2017;171(9):879–886. https://doi.org/10.1001/jamapediatrics.2017.1140.
28. Ranganathan P, Kumar RG, Davis K, McCullough EH, Berga SL, Wagner AK. Longitudinal sex and stress hormone profiles among reproductive age and post-menopausal women after severe TBI: a case series analysis. Brain Inj. 2016;30(4):452–461. https://doi.org/10.3109/02699052.2016.1144081.
29. Ebara S. Nutritional role of folate. Congenit Anom (Kyoto). 2017;57(5):138–141. https://doi.org/10.1111/cga.12233.
30. Abbasi IHR, Abbasi F, Wang L, Abd El Hack ME, Swelum AA, Hao R et al. Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction. AMB Express. 2018;8(1):65. https://doi.org/10.1186/s13568-018-0592-5.
31. Gaskins AJ, Chavarro JE. Diet and fertility: a review. Am J Obstet Gynecol. 2018;218(4):379–389. https://doi.org/10.1016/j.ajog.2017.08.010.
32. Cueto HT, Riis AH, Hatch EE, Wise LA, Rothman KJ, Sørensen HT, Mikkelsen EM. Folic acid supplement use and menstrual cycle characteristics: a cross-sectional study of Danish pregnancy planners. Ann Epidemiol. 2015;25(10):723–729.e1. https://doi.org/10.1016/j.annepidem.2015.05.008.
33. Vašková J, Klepcová Z, Špaková I, Urdzík P, Štofilová J, Bertková I et al. The Importance of Natural Antioxidants in Female Reproduction. Antioxidants (Basel). 2023;12(4):907. https://doi.org/10.3390/antiox12040907.
34. Butenko AV. Homocysteine: effects on biochemical processes in the human body. Young Scientist. 2016;105(1):78–82. (In Russ.) Available at: https://moluch.ru/archive/105/24912.
35. Michels KA, Wactawski-Wende J, Mills JL, Schliep KC, Gaskins AJ, Yeung EH et al. Folate, homocysteine and the ovarian cycle among healthy regularly menstruating women. Hum Reprod. 2017;32(8):1743–1750. https://doi.org/10.1093/humrep/dex233.
36. Paffoni A, Reschini M, Noli SA, Viganò P, Parazzini F, Somigliana E. Folate Levels and Pregnancy Rate in Women Undergoing Assisted Reproductive Techniques: a Systematic Review and Meta-analysis. Reprod Sci. 2022;29(2):341–356. https://doi.org/10.1007/s43032-021-00467-9.
37. Tuncalp Ö, Rogers LM, Lawrie TA, Barreix M, Peña-Rosas JP, Bucagu M et al. WHO recommendations on antenatal nutrition: an update on multiple micronutrient supplements. BMJ Glob Health. 2020;5(7):e003375. https://doi.org/10.1136/bmjgh-2020-003375.
38. Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JWJr, García FA et al. Folic Acid Supplementation for the Prevention of Neural Tube Defects: US Preventive Services Task Force Recommendation Statement. JAMA. 2017;317(2):183–189. https://doi.org/10.1001/jama.2016.19438.
39. Kuznetsova IV, Konovalov VA. Use of folic acid during pregravid preparation and pregnancy. Russian Bulletin of Obstetrician-Gynecologist. 2015;15(1):24–31. (In Russ.) https://doi.org/10.17116/rosakush201515124-31.
40. Mehta N, Pokharna P, Shetty SR. Unwinding the potentials of vitamin C in COVID-19 and other diseases: An updated review. Nutr Health. 2023;29(3):415–433. https://doi.org/10.1177/02601060221139628.
41. Jafari E, Alavi M, Zal F. The evaluation of protective and mitigating effects of vitamin C against side effects induced by radioiodine therapy. Radiat Environ Biophys. 2018;57(3):233–240. https://doi.org/10.1007/s00411-018-0744-7.
42. Bafor EE, Uchendu AP, Osayande OE, Omoruyi O, Omogiade UG, Panama EE et al. Ascorbic Acid and Alpha-Tocopherol Contribute to the Therapy of Polycystic Ovarian Syndrome in Mouse Models. Reprod Sci. 2021;28(1):102–120. https://doi.org/10.1007/s43032-020-00273-9.
43. Xie D, Hu J, Yang Z, Wu T, Xu W, Meng Q et al. Vitamin Supplementation Protects against Nanomaterial-Induced Oxidative Stress and Inflammation Damages: A Meta-Analysis of In Vitro and In Vivo Studies. Nutrients. 2022;14(11):2214. https://doi.org/10.3390/nu14112214.
44. Kolnik S, Wood TR. Role of Vitamin E in Neonatal Neuroprotection: A Comprehensive Narrative Review. Life. 2022;12(7):1083. https://doi.org/10.3390/life12071083.
45. La Torre ME, Villano I, Monda M, Messina A, Cibelli G, Valenzano A et al. Role of Vitamin E and the Orexin System in Neuroprotection. Brain Sci. 2021;11(8):1098. https://doi.org/10.3390/brainsci11081098.
46. Mohd Zaffarin AS, Ng SF, Ng MH, Hassan H, Alias E. Pharmacology and Pharmacokinetics of Vitamin E: Nanoformulations to Enhance Bioavailability. Int J Nanomed. 2020;15:9961–9974. https://doi.org/10.2147/IJN.S276355.
47. Farina N, Llewellyn D, Isaac MGE, Tabet N. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev. 2017;4(4):CD002854. https://doi.org/10.1002/14651858.CD002854.pub5.
48. Mohd Mutalip SS, Ab-Rahim S, Rajikin MH. Vitamin E as an Antioxidant in Female Reproductive Health. Antioxidants. 2018;7(2):22. https://doi.org/10.3390/antiox7020022.
49. Kolnik S, Corry K, Hildahl K, Filteau J, White O, Brandon O et al. Vitamin E Decreases Cytotoxicity and Mitigates Inflammatory and Oxidative Stress Responses in a Ferret Organotypic Brain Slice Model of Neonatal Hypoxia-Ischemia. Dev Neurosci. 2022;44(4–5):233–245. https://doi.org/10.1159/000522485.
50. Pattanittum P, Kunyanone N, Brown J, Sangkomkamhang US, Barnes J, Seyfoddin V, Marjoribanks J. Dietary supplements for dysmenorrhoea. Cochrane Database Syst Rev. 2016;3(3):CD002124. https://doi.org/10.1002/14651858.CD002124.pub2.
51. Громова ОА, Торшин ИЮ. Микронутриенты и репродуктивное здоровье. М.: ГЭОТАР-Медиа; 2019. 672 c.
52. Kala M, Nivsarkar M. Role of cortisol and superoxide dismutase in psychological stress induced anovulation. Gen Comp Endocrinol. 2016;225:117–124. https://doi.org/10.1016/j.ygcen.2015.09.010.
53. Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K et al. Essential metals in health and disease. Chem Biol Interact. 2022;367:110173. https://doi.org/10.1016/j.cbi.2022.110173.
54. DiNicolantonio JJ, O’Keefe JH, Wilson W. Subclinical magnesium deficiency: A principal driver of cardiovascular disease and a public health crisis. Open Heart. 2018;5(1):e000668. https://doi.org/10.1136/openhrt-2017-000668.
55. Pochwat B, Sowa-Kucma M, Kotarska K, Misztak P, Nowak G, Szewczyk B. Antidepressant-like activity of magnesium in the olfactory bulbectomy model is associated with the AMPA/BDNF pathway. Psychopharmacology (Berl). 2015;232(2):355–367. https://doi.org/10.1007/s00213-014-3671-6.
56. Kirkland AE, Sarlo GL, Holton KF. The Role of Magnesium in Neurological Disorders. Nutrients. 2018;10(6):730. https://doi.org/10.3390/nu10060730.
57. Yamanaka R, Shindo Y, Oka K. Magnesium Is a Key Player in Neuronal Maturation and Neuropathology. Int J Mol Sci. 2019;20(14):3439. https://doi.org/10.3390/ijms20143439.
58. De Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: Implications for health and disease. Physiol Rev. 2015;95(1):1–46. https://doi.org/10.1152/physrev.00012.2014.
59. Wienecke E, Nolden C. Long-term HRV analysis shows stress reduction by magnesium intake. MMW Fortschr Med. 2016;158(6):12–16. https://doi.org/10.1007/s15006-016-9054-7.
60. Garrison SR, Korownyk CS, Kolber MR, Allan GM, Musini VM, Sekhon RK, Dugré N. Magnesium for skeletal muscle cramps. Cochrane Database Syst Rev. 2020;9(9):CD009402. https://doi.org/10.1002/14651858.cd009402.pub3.
61. Ożarowski M, Karpiński TM. Extracts and Flavonoids of Passiflora Species as Promising Anti-inflammatory and Antioxidant Substances. Curr Pharm Des. 2021;27(22):2582–2604. https://doi.org/10.2174/1381612826666200526150113.
62. Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxid Med Cell Longev. 2018;2018:6241017. https://doi.org/10.1155/2018/6241017.
63. Jahan S, Munir F, Razak S, Mehboob A, Ain QU, Ullah H et al. Ameliorative effects of rutin against metabolic, biochemical and hormonal disturbances in polycystic ovary syndrome in rats. J Ovarian Res. 2016;9(1):86. https://doi.org/10.1186/s13048-016-0295-y.
64. Kim S, Seo S, Lee M-S, Jang E, Shin Y, Oh S, Kim Y. Rutin Reduces Body Weight with an Increase of Muscle Mitochondria Biogenesis and Activation of AMPK in Diet-induced Obese Rats. FASEB J. 2015;29(1):595.
65. Stoyanova N, Spasova M, Manolova N, Rashkov I, Georgieva A, Toshkova R. Quercetin- and Rutin-Containing Electrospun Cellulose Acetate and Polyethylene Glycol Fibers with Antioxidant and Anticancer Properties. Polymers (Basel). 2022;14(24):5380. https://doi.org/10.3390/polym14245380.
66. Akimoto M, Iizuka M, Kanematsu R, Yoshida M, Takenaga K. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS ONE. 2015;10(5):e0126605. https://doi.org/10.1371/journal.pone.0126605.
67. Li N, Xing Y, Sultan AH, Raeeszadeh M, Akbari A, Liu H. Zingiber officinale roscoe improves ethanol-induced reproductive dysfunction by enhancing steroidogenesis and inhibiting oxidative stress and inflammation. Braz Arch Biol Technol. 2021;64:24–26.
68. Yılmaz N, Seven B, Timur H, Yorgancı A, İnal HA, Kalem MN et al. Ginger (zingiber officinale) might improve female fertility: A rat model. J Chin Med Assoc. 2018;81(10):905–911. https://doi.org/10.1016/j.jcma.2017.12.009.
69. Usman AN, Raya I, Yasmin R, Aliyah, Dirpan A, Arsyad A et al. Ginger honey affects cortisol, estrogen and glutathione levels; preliminary study to target preconceptional women. Gac Sanit. 2021;35(2):251–253. https://doi.org/10.1016/j.gaceta.2021.07.018.
70. Atashpour S, Kargar Jahromi H, Kargar Jahromi Z, Maleknasab M. Comparison of the effects of Ginger extract with clomiphene citrate on sex hormones in rats with polycystic ovarian syndrome. Int J Reprod Biomed. 2017;15(9): 561–568. Available at: https://pubmed.ncbi.nlm.nih.gov/29662964.
71. Bonab SB. The effect of 12-week pilates training and ginger supplementation on polycystic ovary syndrome in women. Studies Med Sci. 2020;31:146–157.
72. Naveed M, Imran M, Khalid S, Qureshi I, Ahmad I, Inayat S, Imtiaz F. Comparative effect of ginger and vitamin E supplements on pain and quality of life among females with dysmenorrhea: a randomized controlled trial. Pak Biomed J. 2022;5:104–109.
73. Harjai K, Chand R. A study to assess the effectiveness of ginger for reducing pain in primary dysmenorrhoea among adolescent girls in selected college of nursing at Dehradun. Int J Res Cult Soc. 2018;2:136–141.
74. Kim SD, Kwag EB, Yang MX, Yoo HS. Efficacy and Safety of Ginger on the Side Effects of Chemotherapy in Breast Cancer Patients: Systematic Review and Meta-Analysis. Int J Mol Sci. 2022;23(19):11267. https://doi.org/10.3390/ijms231911267.
75. Kartini Piyaviriyakul S, Thongpraditchote S, Siripong P, Vallisuta O. Effects of Plantago major Extracts and Its Chemical Compounds on Proliferation of Cancer Cells and Cytokines Production of Lipopolysaccharide-activated THP-1 Macrophages. Pharmacogn Mag. 2017;13(51):393–399. https://doi.org/10.4103/pm.pm_406_16.
76. Lv PY, Feng H, Huang WH, Tian YY, Wang YQ, Qin YH et al. Aucubin and its hydrolytic derivative attenuate activation of hepatic stellate cells via modulation of TGF-β stimulation. Environ Toxicol Pharmacol. 2017;50:234–239. https://doi.org/10.1016/j.etap.2017.02.012.
77. Zeng X, Guo F, Ouyang D. A review of the pharmacology and toxicology of aucubin. Fitoterapia. 2020;140:104443. https://doi.org/10.1016/j.fitote.2019.104443.
78. Zhou Y, Li P, Duan JX, Liu T, Guan XX, Mei WX et al. Aucubin Alleviates Bleomycin-Induced Pulmonary Fibrosis in a Mouse Model. Inflammation. 2017;40(6):2062–2073. https://doi.org/10.1007/s10753-017-0646-x.
79. Zhu Z, Xie Q, Huang Y, Zhang S, Chen Y. Aucubin suppresses Titanium particles-mediated apoptosis of MC3T3-E1 cells and facilitates osteogenesis by affecting the BMP2/Smads/RunX2 signaling pathway. Mol Med Rep. 2018;18(3):2561–2570. https://doi.org/10.3892/mmr.2018.9286.
80. Wang H, Zhou XM, Wu LY, Liu GJ, Xu WD, Zhang XS et al. Aucubin alleviates oxidative stress and inflammation via Nrf2-mediated signaling activity in experimental traumatic brain injury. J Neuroinflammation. 2020;17(1):188. https://doi.org/10.1186/s12974-020-01863-9.
81. Svoboda P, Doležel R, Kupka P, Rudiš J, Pohnán R. Penetrating abdominal trauma – selected case reports. Rozhl Chir. 2021;100(5):246–251. https://doi.org/10.33699/PIS.2021.100.5.249-254.
82. Shamina IV, Dudkova GV. An integrated approach to the problems of the formation of reproductive function in girls. New possibilities of application of phytopreparations. Gynecology. 2014;16(4):28–32. (In Russ.) Available at: https://omnidoctor.ru/library/izdaniya-dlya-vrachey/ginekologiya/gn2014/gn2014_16_4/kompleksnyy-podkhod-k-problemam-stanovleniyareproduktivnoy-funktsii-u-devochek-novye-vozmozhnosti-p.
83. Shayan A, Masoumi SZ, Shobeiri F, Tohidi S, Khalili A. Comparing the Effects of Agnugol and Metformin on Oligomenorrhea in Patients with Polycystic Ovary Syndrome: A Randomized Clinical Trial. J Clin Diagn Res. 2016;10(12):QC13–QC16. https://doi.org/10.7860/jcdr/2016/22584.9040.
84. Amarakoon D, Lee WJ, Tamia G, Lee SH. Indole-3-Carbinol: Occurrence, Health-Beneficial Properties, and Cellular/Molecular Mechanisms. Annu Rev Food Sci Technol. 2023;14:347–366. https://doi.org/10.1146/annurevfood-060721-025531.
85. Batishcheva GA, Mubarakshina OA, Dronova YuM, Mubarakshin EA, Prokudina EA. New possibilities of pharmacological correction of menstrual disorders. Akusherstvo i Ginekologiya (Russian Federation). 2015;(10):125–129. (In Russ.) Available at: https://aig-journal.ru/articles/Novye-vozmojnosti-farmakologicheskoi-korrekcii-narusheniimenstrualnogo-cikla.html.
86. Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2018;16(1):80. https://doi.org/10.1186/s12958-018-0391-5.
87. Bansal K, Sundram S, Malviya R. Herbal Components Inspiring Current Lifestyle Disease Treatment: Role of Nutraceuticals. Curr Drug Res Rev. 2024;16(2):111–127. https://doi.org/10.2174/2589977515666230512142020.
88. Lan X, Field MS, Stover PJ. Cell cycle regulation of folate-mediated onecarbon metabolism. Wiley Interdiscip Rev Syst Biol Med. 2018;10(6):e1426. https://doi.org/10.1002/wsbm.1426.
89. Teixeira J, Oliveira C, Amorim R, Cagide F, Garrido J, Ribeiro JA et al. Development of hydroxybenzoic-based platforms as a solution to deliver dietary antioxidants to mitochondria. Sci Rep. 2017;7(1):6842. https://doi.org/10.1038/s41598-017-07272-y.
90. Tatarova NA, Linde VA, Hayrapetyan MS, Zhigalova ЕV. Hormone modulating and cyclic vitamin therapy of menstrual disorders and premenstrual. Russian Journal of Woman and Child Health. 2017;25(2):86–90. (In Russ.) Available at: https://wchjournal.com/articles/ginekologiya/Gormonomoduliruyuschaya_i_ciklicheskaya_vitaminoterapiya_narusheniy_menstrualynogo_cikla_i_predmenstrualynogo_sindroma.
91. Tkachenko LV, Hamad NP, Yakhontova MA. To the problem of rehabilitation of patients with uterine bleeding during puberty. In: Abstracts of the II Scientific and Practical Conference with international participation “National and international experience in the protection of reproductive health of children and adolescents” (April 26–29, 2016, Moscow). Part G. Pediatric and Adolescent Reproductive Health. 2016;(3):53–54. (In Russ.) Available at: https://child-reprodhealth.ru/ru/jarticles_repr/459.html?SSr=320134ff2f13ffffffff27c__07e9040f0d201c-f19.
92. Наделяева ЯГ, Данусевич ИН, Илькова ВФ, Воронова АР, Толстых АГ, Аслаева ЭЛ. Способ комплексного лечения дисфункции яичников при применении гормонального контрацептива имплантата «Импланона». Патент на изобретение RU 2595818 C1, 27.08.2016. Заявка №2015119734/15 от 25.05.2015.
93. Kuznetsova IV, Khadzhieva NK. Use of biologically active food supplements for menstrual disorders. Meditsinskiy Sovet. 2020;(3):32–36. (In Russ.) https://doi.org/10.21518/2079-701X-2020-3-32-36.
Review
For citations:
Kuznetsova IV, Kochemasova TV. Biologically active food additives in stress-related menstrual cycle disorders. Meditsinskiy sovet = Medical Council. 2025;(4):86-94. (In Russ.) https://doi.org/10.21518/ms2025-167